Browse > Article
http://dx.doi.org/10.12989/mwt.2022.13.1.029

Engineered nanoparticles in wastewater systems: Effect of organic size on the fate of nanoparticles  

Choi, Soohoon (Department of Civil and Environmental engineering, University of Delaware)
Chen, Ching-Lung (Department of Civil and Environmental engineering, University of Delaware)
Johnston, Murray V. (Department of Chemistry and Biochemistry, University of Delaware)
Wang, Gen Suh (Institute of Environmental Health, National Taiwan University)
Huang, Chin-Pao (Department of Civil and Environmental engineering, University of Delaware)
Publication Information
Membrane and Water Treatment / v.13, no.1, 2022 , pp. 29-37 More about this Journal
Abstract
To verify the fate and transport of engineered nanoparticles (ENP), it is essential to understand its interactions with organic matter. Previous research has shown that dissolved organic matter (DOM) can increase particle stability through steric repulsion. However, the majority of the research has been focused on model organic matter such as humic or fulvic acids, lacking the understanding of organic matter found in field conditions. In the current study, organic matter was sampled from wastewater treatment plants to verify the stability of engineered nanoparticles (ENP) under field conditions. To understand how different types of organic matter may affect the fate of ENP, wastewater was sampled and separated based on their size; as small organic particular matter (SOPM) and large organic particular matter (LOPM), and dissolved organic matter (DOM). Each size fraction of organic matter was tested to verify their effects on nano-zinc oxide (nZnO) and nano-titanium oxide (nTiO2) stability. For DOM, critical coagulation concentration (CCC) experiments were conducted, while sorption experiments were conducted for organic particulates. Results showed that under field conditions, the surface charge of the particles did not influence the stability. On the contrary, surface charge of the particles influenced the amount of sorption onto particulate forms of organic matter. Results of the current research show how the size of organic matter influences the fate and transport of different ENPs under field conditions.
Keywords
attachment; critical coagulation concentration; dissolved organic matter; fate and transport; $TiO_2$ and ZnO nanoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xu, J. and Li, X.Y. (2016), "Investigation of the effect of nanoparticle exposure on the flocculability of activated sludge using particle image velocimetry in combination with the extended DLVO analysis", Colloid Surfaces B, 143, 382-389. https://doi.org/10.1016/j.colsurfb.2016.03.062.   DOI
2 Yuan, B., Pham, M. and Nguyen, T.H. (2008), "Deposition kinetics of bacteriophage MS2 on a silica surface coated with natural organic matter in a radial stagnation point flow cell", Environ. Sci. Technol., 42(20), 7628-7633. https://doi.org/10.1021/es801003s.   DOI
3 Van Zanten, J.H. and Elimelech, M. (1992), "Determination of absolute coagulation rate constants by multiangle light scattering", J. Colloid Interf. Sci., 154(1), 1-7. https://doi.org/10.1016/0021-9797(92)90072-T.   DOI
4 Zheng, X., Wu, R. and Chen, Y. (2011), "Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal", Environ. Sci. Technol., 45(7), 2826-2832. https://doi.org/10.1021/es2000744.   DOI
5 Zhou, D. and Keller, A.A. (2010), "Role of morphology in the aggregation kinetics of ZnO nanoparticles", Water Res., 44(9), 2948-2956. https://doi.org/10.1016/j.watres.2010.02.025.   DOI
6 Sani-Kast, N. Labille, J., Ollivier, P., Slomberg, D., Hungerbuhler, K. and Scheringer, M. (2017), "A network perspective reveals decreasing material diversity in studies on nanoparticle interactions with dissolved organic matter", Proceedings of the National Academy of Sciences, 114(10), E1756-E1765. https://doi.org/10.1073/pnas.1608106114.   DOI
7 Sousa, V.S., Corniciuc, C. and Ribau Teixeira, M. (2017), "The effect of TiO2nanoparticles removal on drinking water quality produced by conventional treatment C/F/S", Water Res., 109, 1-12. https://doi.org/10.1016/j.watres.2016.11.030.   DOI
8 Muller, T.J.J., Bunz, U.H.F. (2007), Functional Organic Materials: Syntheses, Strategies and Applications, John Wiley & Sons, Morlenbach, Germany.
9 Wang, Y., Combe, C. and Clark, M.M. (2001), "The effects of pH and calcium on the diffusion coefficient of humic acid", J. Membr. Sci., 183(1), 49-60. https://doi.org/10.1016/S0376-7388(00)00555-X.   DOI
10 Gora, S.L. and Andrews, S.A. (2017), "Adsorption of natural organic matter and disinfection byproduct precursors from surface water on TiO2 Nanoparticles: pH effects, isotherm modelling and implications for using TiO2 for drinking water treatment", Chemosphere., 174, 363-370. https://doi.org/10.1016/j.chemosphere.2017.01.125.   DOI
11 Nowack, B., Krug, H. and Height, M. (2011), "120 Years of nanosilver history: Implications for policy makers", Environ. Sci. Technol., 45(7), 3189. https://doi.org/10.1021/es200435m.   DOI
12 Chen, K.L. and Elimelech, M., (2007), "Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions", J. Colloid Interf. Sci., 309(1), 126-134. https://doi.org/10.1016/j.jcis.2007.01.074.   DOI
13 Li, K. and Chen, Y. (2012), "Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: Measurements and modeling", J. Hazard. Mater., 209-210, 264-270. https://doi.org/10.1016/j.jhazmat.2012.01.013.   DOI
14 Miao, L., Wang, C. and Xu, Y. (2016), "Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca2+", Environ. Sci. Pollut. Res., 23(12), 11611-11619. https://doi.org/10.1007/s11356-016-6358-1.   DOI
15 Aboubaraka, A.E., Aboelfetoh, E.F. and Ebeid, E.Z.M., (2017), "Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water", Chemosphere, 181, 738-746. https://doi.org/10.1016/j.chemosphere.2017.04.137.   DOI
16 Chang, H.H., Cheng, T.J., Huang, C.P. and Wang, G.S. (2017), "Characterization of titanium dioxide nanoparticle removal in simulated drinking water treatment processes", Sci. Total Environ., 601-602, 886-894. https://doi.org/10.1016/j.scitotenv.2017.05.228.   DOI
17 Sun, T.Y., Bornhoft, N.A., Hungerbuhler, K. and Nowack, B. (2016), "Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials", Environ. Sci. Technol., 50(9), 4701-4711. https://doi.org/10.1021/acs.est.5b05828.   DOI
18 Benn, T., Cavanagh, B., Hristovski, K., Posner, J.D. and Westerhoff, P. (2010), "The release of nanosilver from consumer products used in the home", J. Environ. Qual., 39(6), 1875. https://doi.org/10.2134/jeq2009.0363.   DOI
19 Benn, T.M. and Westerhoff, P. (2008), "Nanoparticle silver released into water from commercially available sock fabrics", Environ. Sci. Technol., 42(11), 4133-4139. https://doi.org/10.1021/es7032718.   DOI
20 Bundschuh, M., Filser, J., Luderwald, S., McKee, M.S., Metreveli, G., Schaumann, G.E., Schulz, R. and Wagner, S. (2018), "Nanoparticles in the environment: where do we come from, where do we go to?", Environ. Sci. Eur., 30(1), 1-17. https://doi.org/10.1186/s12302-018-0132-6.   DOI
21 Chen, K.L., Mylon, S.E. and Elimelech, M. (2007), "Enhanced aggregation of alginate-coated iron oxide (Hematite) nanoparticles in the presence of calcium, strontium, and barium cations enhanced aggregation of alginate-coated iron oxide (Hematite) nanoparticles in the presence of calcium, strontium", Society, 17(6), 5920-5928. https://doi.org/10.1021/la063744k.
22 Chowdhury, I., Duch, M.C., Mansukhani, N.D., Hersam, M.C. and Bouchard, D. (2013) "Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment", Environ. Sci. Technol., 47(12). https://doi.org/10.1021/es400483k.   DOI
23 Chowdhury, I., Cwiertny, D.M. and Walker, S.L. (2012), "Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria", Environ. Sci. Technol., 46(13), 6968-6976. https://doi.org/10.1021/es2034747.   DOI
24 Jiang, Y., Raliya, R., Fortner, J.D., Biswas, P. (2016), "Graphene oxides in water: Correlating morphology and surface chemistry with aggregation behavior." Environ. Sci. Technol., 50(13), 6964-6973. https://doi.org/10.1021/acs.est.6b00810.   DOI
25 Thio, J.R., Zhou, D. and Keller, A.A. (2011), "Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles", J. Hazard. Mater., 189(1-2), 556-563. https://doi.org/10.1016/j.jhazmat.2011.02.072.   DOI
26 Wagener, S., Dommershausen, N., Jungnickel, H., Laux, P., Mitrano, D., Nowack, B., Schneider, G. and Luch, A. (2016), "Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat", Environ. Sci. Technol., 50(11), 5927-5934. https://doi.org/10.1021/acs.est.5b06137.   DOI
27 Debia, M., Bakhiyi, B., Ostiguy, C., Verbeek, J.H., Brouwer, D.H. and Murashov, V. (2016), "A systematic review of reported exposure to engineered nanomaterials", Annals of Occup. Hyg., 60(8), 916-935. https://doi.org/10.1093/annweh/wxy048.   DOI
28 Duch, M.C., Budinger, G.R.S., Liang, Y.T., Soberanes, S., Urich, D., Chiarella, S.E., Campochiaro, L.A., Gonzalez, A., Chandel, N.S., Hersam, M.C. and Mutlu, G.M. (2011), "Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung", Nano Lett., 11(12), 5201-5207. https://doi.org/10.1021/nl202515a.   DOI
29 Erhayem, M. and Sohn, M. (2014), "Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter", Sci. Total Environ., 468-469, 249-257. https://doi.org/10.1016/j.scitotenv.2013.08.038.   DOI
30 Nicolosi, V., Vrbanic, D., Mrzel, A., McCauley, J., O'Flaherty, S., McGuinness, C., Compagnini, G., Mihailovic, D., Blau, W.J. and Coleman, J.N. (2005), "Solubility of Mo6S4.5I4.5 nanowires in common solvents: A sedimentation study", J. Phys. Chem. B, 109(15), 7124-7133. https://doi.org/10.1021/jp045166r.   DOI
31 Keller, A.A., Wang, H., Zhou, D., Lenihan, H. S., Cherr, G., Cardinale, B.J., Miller, R., and Ji, Z. (2010), "Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices", Environ. Sci. Technol., 44(6), 1962-1967. https://doi.org/10.1021/es902987d.   DOI
32 Petersen, E.J., Zhang, L., Mattison, N.T., O'Carroll, D.M., Whelton, A.J., Uddin, N., Nguyen, T., Huang, Q., Henry, T.B., Holbrook, R.D. and Chen, K.L. (2011), "Potential release pathways, environmental fate, and ecological risks of carbon nanotubes", Environ. Sci. Technol., 45(23), 9837. https://doi.org/10.1021/es201579y.   DOI
33 Liao, P., Li, W., Wang, D., Jiang, Y., Pan, C., Fortner, J.D. and Yuan, S. (2017), "Effect of reduced humic acid on the transport of ferrihydrite nanoparticles under anoxic conditions", Water Res., 109, 347-357. https://doi.org/10.1016/j.watres.2016.11.069.   DOI
34 Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S., Simmler, H., Brunner, S., Vonmont, H., Burkhardt, M. and Boller, M. (2008), "Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment", Environ. Pollut., 156(2), 233-239. https://doi.org/10.1016/j.envpol.2008.08.004.   DOI
35 Adams, L.K., Lyon, D.Y. and Alvarez, P.J.J., (2006), "Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions", Water Res., 40(19), 3527-3532. https://doi.org/10.1016/j.watres.2006.08.004.   DOI
36 Bolyard, S.C., Reinhart, D.R. and Santra, S. (2013), "Behavior of engineered nanoparticles in land fill leachate", Environ. Sci. Technol., 47(15), 8114. https://doi.org/10.1021/es305175e.   DOI
37 Chen, K.L. and Elimelech, M., (2006), "Aggregation and deposition kinetics of fullerene (C-60) nanoparticles", Langmuir, 22(18), 10994-11001. https://doi.org/10.1021/la062072v.   DOI
38 Mukha, I.P., Eremenko, A.M., Smirnova, N.P., Mikhienkova, A.I., Korchak, G.I., Gorchev, V.F. and Chunikhin, A.I. (2013), "Antimicrobial activity of stable silver nanoparticles of a certain size", Appl. Biochem. Microbiol., 49(2), 199-206. https://doi.org/10.1134/S0003683813020117.   DOI
39 Park, H.J., Kim H.Y., Cha, S., Ahn, C.H., Roh, J., Park, S., Kim, S., Choi, K., Yi, J., Kim, Y. and Yoon, J. (2013), "Removal characteristics of engineered nanoparticles by activated sludge", Chemosphere, 92(5), 524-528. https://doi.org/10.1016/j.chemosphere.2013.03.020.   DOI
40 Shih, Y.H., Liu, W.S. and Su, Y.F. (2012), "Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions", Environ. Toxicol. Chem., 31(8), 1693-1698. https://doi.org/10.1002/etc.1898.   DOI
41 Weir, A. Westerhoff, P., Fabricius, L., Hristovski, K. and Goetz, N.V. (2012), "Titanium dioxide nanoparticles in food and personal care products", Environ. Sci. Technol., 46(4), 2242-2250. https://doi.org/10.1021/es204168d.   DOI
42 Illes, E. and Tombacz, E. (2006), "The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles", J. Colloid Interf. Sci., 295(1), 115-123. https://doi.org/10.1016/j.jcis.2005.08.003.   DOI
43 French, R.A., Jacobson, A.R., Kim, B., Isley, S.L., Penn, R.L. and Baveye, P.C. (2009), "Influence of ionic strength, pH, andcation valence on aggregation kinetics of titanium dioxide nanoparticles", Environ. Sci. Technol., 43(5), 1354-1359. https://doi.org/10.1021/es802628n.   DOI
44 Gambinossi, F., Mylon, S.E. and Ferri, J.K. (2015) "Aggregation kinetics and colloidal stability of functionalized nanoparticles", Adv. Colloid Interf. Sci., 222, 332-349. https://doi.org/10.1016/j.cis.2014.07.015.   DOI
45 Hansen, F.S. Heggelund, L.R., Besora, P.R., Mackevica, A., Boldrina, A. and Bauna, A. (2016), "Nanoproducts - What is actually available to European consumers?", Environ. Sci. Nano., 3(1), 169-180. https://doi.org/10.1039/C5EN00182J.   DOI
46 Li, M. and Huang, C.P. (2010), "Stability of oxidized single-walled carbon nanotubes in the presence of simple electrolytes and humic acid", Carbon., 48(15), 4527-4534. https://doi.org/10.1016/j.carbon.2010.08.032.   DOI
47 Windler, L., Lorenz, C., Goetz, N.V., Hungerbuhler, K., Amberg, M., Heuberger, M. and Nowack, B. (2012), "Release of titanium dioxide from textiles during washing", Environ. Sci. Technol., 46(15), 8181-8188. https://doi.org/10.1021/es301633b.   DOI