Browse > Article
http://dx.doi.org/10.33961/jecst.2022.00458

Electrochemical Impedance Characteristics of a Low-Temperature Single Cell for CO2/H2O Co-Reduction to Produce Syngas (CO+H2)  

Min Gwan, Ha (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Donghoon, Shin (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Jeawoo, Jung (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Emilio, Audasso (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Juhun, Song (School of Mechanical Engineering, Pusan National University)
Yong-Tae, Kim (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH))
Hee-Young, Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Hyun S., Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Youngseung, Na (Department of Mechanical and Information Engineering, University of Seoul)
Jong Hyun, Jang (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.4, 2022 , pp. 462-471 More about this Journal
Abstract
In this study, the electrochemical impedance characteristics of CO2/H2O co-reduction to produce CO/H2 syngas were investigated in a low-temperature single cell. The effect of the operating conditions on the single-cell performance was evaluated at different feed concentrations and cell voltages, and the corresponding electrochemical impedance spectroscopy (EIS) data were collected and analyzed. The Nyquist plots exhibited two semicircles with separated characteristic frequencies of approximately 1 kHz and tens of Hz. The high-frequency semicircles, which depend only on the catholyte concentration, could be correlated to the charge transfer processes in competitive CO2 reduction and hydrogen evolution reactions at the cathodes. The EIS characteristics of the CO2/H2O co-reduction single cell could be explained by the equivalent circuit suggested in this study. In this circuit, the cathodic mass transfer and anodic charge transfer processes are collectively represented by a parallel combination of resistance and a constant phase element to show low-frequency semicircles. Through nonlinear fitting using the equivalent circuit, the parameters for each electrochemical element, such as polarization resistances for high- and low-frequency processes, could be quantified as functions of feed concentration and cell voltage.
Keywords
$CO_2/H_2O$ Co-Reduction; Syngas; Carbon Dioxide Reduction; Proton Exchange Membrane; Electrochemical Impedance Spectroscopy;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 W. C. Wang, Y. L. Yung, A. A. Lacis, T. Mo, and J. E. Hansen, Science, 1976, 194(4266), 685-690.   DOI
2 D. A. Lashof and D. R. Ahuja, Nature, 1990, 344, 529-531.   DOI
3 M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk, and T. M. L. Wigley, Science, 2002, 298(5595), 981-987.   DOI
4 C. L. Quere, M. R. Raupach, J. G. Canadell, G. Marland, L. Bopp, P. Ciais, T. J. Conway, S. C. Doney, R. A. Feely, P. Foster, P. Friedlingstein, K. Gurney, R. A. Houghton, J. I. House, C. Huntingford, P. E. Levy, M. R. Lomas, J. Majkut, N. Metzl, J. P. Ometto, G. P. Peters, I. C. Prentice, J. T. Randerson, S. W. Running, J. L. Sarmiento, U. Schuster, S. Sitch, T. Takahashi, N. Viovy, G. R. van der Werf, and F. I. Woodward, Nat. Geosci., 2009, 2, 831-836.   DOI
5 K. Riahi, E. S. Rubin, M. R. Taylor, L. Schrattenholzer, and D. Hounshell, Energy Economics, 2004, 26(4), 539-564.   DOI
6 J. C. Abanades, E. S. Rubin, M. Mazzotti, and H. J. Herzog, Energy Environ. Sci., 2017, 10(12), 2491-2499.   DOI
7 M. E. Dry, Catal. Today, 2002, 71(3-4), 227-241.   DOI
8 C. Delacourt, P. L. Ridgway, J. B. Kerr, and J. Newman, J. Electrochem. Soc., 2008, 155(1), B42.
9 H. Xie, S. Chen, F. Ma, J. Liang, Z. Miao, T. Wang, H.-L. Wang, Y. Huang, and Q. Li, ACS Appl. Mater. Interfaces, 2018, 10(43), 36996-37004.   DOI
10 Q. He, D. Liu, J. H. Lee, Y. Liu, Z. Xie, S. Hwang, S. Kattel, L. Song, and J. G. Chen, Angew. Chem. Int. Ed., 2020, 59(8), 3033-3037.   DOI
11 Y. Liu, D. Tian, A. N. Biswas, Z. Xie, S. Hwang, J. H. Lee, H. Meng, and J. G. Chen, Angew. Chem. Int. Ed., 2020, 59(28), 11345-11348.   DOI
12 Y. H. Chung, M. G. Ha, Y. Na, H. Y. Park, H. J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, S. W. Lee, H. S. Park, Y.-T. Kim, and J. H. Jang, Electroanalysis, 2019, 31(7), 1401-1408.
13 Y. Chen, C. W. Li, and M. W. Kanan, J. Am. Chem. Soc., 2012, 134(49), 19969-19972.   DOI
14 W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun, J. Am. Chem. Soc., 2013, 135(45), 16833-16836.   DOI
15 H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, and B. R. Cuenya, J. Am. Chem. Soc., 2014, 136(47), 16473-16476.   DOI
16 W. Zhu, Y.-J. Zhang, H. Zhang, H. Lv, Q. Li, R. Michalsky, A. A. Peterson, and S. Sun, J. Am. Chem. Soc., 2014, 136(46), 16132-16135.   DOI
17 S. Back, M. S. Yeom, and Y. Jung, ACS Catal., 2015, 5(9), 5089-5096.   DOI
18 Y. S. Ham, M. J. Kim, J. Choi, S. Choe, T. Lim, S.-K. Kim, and J. J. Kim, J. Nanosci. Nanotechnol., 2016, 16(10), 10846-10852.   DOI
19 J.-H. Kim, H. Woo, S.-W. Yun, H.-W. Jung, S. Back, Y. Jung, and Y.-T. Kim, Appl. Catal. B, 2017, 213, 211-215.   DOI
20 M. W. Chung, I. Y. Cha, M. G. Ha, Y. Na, J. Hwang, H. C. Ham, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, H. S. Park, and J. H. Jang, Appl. Catal. B, 2018, 237, 673-680.   DOI
21 Y. S. Ham, M. J. Kim, T. Lim, D.-K. Kim, S.-K. Kim, and J. J. Kim, Int. J. Hydrog. Energy, 2018, 43(24), 11315-11325.   DOI
22 X. Peng, S. G. Karakalos, and W. E. Mustain, ACS Appl. Mater. Interfaces, 2018, 10(2), 1734-1742.   DOI
23 J. Rosen, G. S. Hutchings, Q. Lu, R. V. Forest, A. Moore, and F. Jiao, ACS Catal., 2015, 5(8), 4586-4591.   DOI
24 W. Luo, J. Zhang, M. Li, and A. Zu?ttel, ACS Catal., 2019, 9(5), 3783-3791.   DOI
25 Z. Weng, J. Jiang, Y. Wu, Z. Wu, X. Guo, K.L. Materna, W. Liu, V.S. Batista, G.W. Brudvig, and H. Wang, J. Am. Chem. Soc., 2016, 138(26), 8076-8079.   DOI
26 C. Delacourt and J. Newman, J. Electrochem. Soc., 2010, 157(12), B1911.
27 M. G. Ha, Y. Na, H. Y. Park, H.-J. Kim, J. Song, S. J. Yoo, Y.-T. Kim, H. S. Park, and J. H. Jang, J. Electrochem. Sci. Technol., 2021, 12(4), 406-414.   DOI
28 E. J. Dufek, T. E. Lister, and M. E. McIlwain, J. Appl. Electrochem., 2011, 41(6), 623-631.   DOI
29 E. J. Dufek, T. E. Lister, S. G. Stone, and M. E. McIlwain, J. Electrochem. Soc., 2012, 159(9), F514.
30 D. T. Whipple, E. C. Finke, and P. J. A. Kenis, Electrochem. Solid-State. Lett., 2010, 13(9), B109.
31 M. R. Thorson, K. I. Siil, and P. J. A. Kenis, J. Electrochem. Soc., 2012, 160(1), F69.
32 B. Kim, S. Ma, H.-R. M. Jhong, and P. J. A. Kenis, Electrochim. Acta, 2015, 166, 271-276.   DOI
33 B. Kim, F. Hillman, M. Ariyoshi, S. Fujikawa, and P. J. A. Kenis, J. Power Sources, 2016, 312, 192-198.   DOI
34 S. Verma, X. Lu, S. Ma, R. I. Masel, and P. J. A. Kenis, Phys. Chem. Chem. Phys., 2016, 18(10), 7075-7084.   DOI
35 M. Zhang, Z. Hu, L. Gu, Q. Zhang, L. Zhang, Q. Song, W. Zhou, and S. Hu, Nano Res., 2020, 13, 3206-3211.   DOI
36 H. Kim, H. Lee, T. Lim, and S. H. Ahn, J. Ind. Eng. Chem., 2018, 66, 248-253.   DOI
37 S. Y. Choi, S. K. Jeong, H. J. Kim, I.-H. Baek, and K. T. Park, ACS Sustainable Chem. Eng., 2016, 4(3), 1311-1318.   DOI
38 W. Guo, K. Shim, and Y.-T. Kim, Appl. Surf. Sci., 2020, 526, 146651.
39 J. Zeng, K. Bejtka, W. Ju, M. Castellino, A. Chiodoni, A. Sacco, M. A. Farkhondehfal, S. Hernandez, D. Rentsch, C. Battaglia, and C. F. Pirri, Appl. Catal. B, 2018, 236, 475-482.   DOI
40 D.-w. Yang, Q.-y. Li, F.-x. Shen, Q. Wang, L. Li, N. Song, Y.-n. Dai, and J. Shi, Electrochim. Acta, 2016, 189, 32-37.
41 R. Daiyan, X. Lu, W. H. Saputera, Y. H. Ng, and R. Amal, ACS Sustainable Chem. Eng., 2018, 6(2), 1670-1679.   DOI
42 K. Kannan, M. H. Sliem, A. M. Abdullah, K. K. Sadasivuni, and B. Kumar, Catalysts, 2020, 10(5), 549.
43 F. Bienen, D. Kopljar, S. Geiger, N. Wagner, and K. A. Friedrich, ACS Sustainable Chem. Eng., 2020, 8(13), 5192-5199.   DOI
44 J. O'M. Bockris, B. E. Conway, and R. E. White (Eds.), Modern aspects of electrochemistry, Springer Science & Business Media, 1992.
45 K. S. Adarsh, N. Chandrasekaran, and V. Chakrapani, Front. Chem., 2020, 8, 137.
46 B. Qin, Y. Li, H. Wang, G. Yang, Y. Cao, H. Yu, Q. Zhang, H. Liang, and F. Peng, Nano Energy, 2019, 60, 43-51.   DOI
47 Y. Na, M. G. Ha, H. S. Park, H. Y. Park, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee and J. H. Jang, Front. Energy Res., 2022, 10, 943113.
48 K. Elsoe, M. R. Kraglund, L. Grahl-Madsen, G. G. Scherer, J. Hjelm, S. H. Jensen, T. Jacobsen, and M. B. Mogensen, Fuel Cells, 2018, 18(5), 640-648.   DOI
49 R. H. Tammam, A. M. Fekry, and M. M. Saleh, Korean J. Chem. Eng., 2019, 36, 1932-1939.   DOI
50 N. J. Perez-Viramontes, V. H. Collins-Martinez, I. L. Escalante-Garcia, J. R. Flores-Hernandez, M. GalvanValencia, and S. M. Duron-Torres, Catalysts, 2020, 10(5), 524.
51 C. Chen, X. Wang, R. Xu, Y. Zhang, S. Feng, A. Ju, and W. Jiang, RSC Adv., 2021, 11, 6146-6158.   DOI
52 J. Santana, M. Espinoza-Andaluz, T. Li, and M. Andersson, Front. Energy Res., 2020, 8, 217.
53 T. S. Mayadevi, B.-H. Goo, S. Y. Paek, O. Choi, Y. Kim, O. J. Kwon, S. Y. Lee, H.-J. Kim, and T.-H. Kim, ACS Omega, 2022, 7(15), 12956-12970.   DOI