전바나듐계 레독스-흐름 전지용 IPA-co-HDO-co-(TPA/MA) 음이온교환막의 합성 및 특성

Synthesis and Characterization of IPA-co-HDO-co-(TPA/MA) Anion-Exchange Membrane for All-Vanadium Redox Flow Battery

  • 정재철 (충남대학교 바이오응용화학과) ;
  • 곽노석 (충남대학교 바이오응용화학과) ;
  • 황택성 (충남대학교 바이오응용화학과)
  • Jung, Jae-Chul (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kwak, Noh-Seok (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Hwang, Taek-Sung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 투고 : 2011.06.22
  • 심사 : 2011.10.18
  • 발행 : 2011.11.25

초록

본 연구에서는 전바나듐 레독스-흐름 전지용 음이온교환막의 제조를 위하여 isophthalic acid (IPA), 1,6-hexanediol(HDO), terephthalic acid(TPA), maleic anhydride(MA)의 용융 축합중합 방법에 의해 IPA-co-HDO-co-(TPA/MA)(IHTM) 공중합체를 합성하였다. 합성된 IHTM 공중합체 아민화 반응을 trimethylamine으로 하였으며, UV 가교 반응을 통하여 음이온교환막을 제조하였다. IHTM 공중합체의 구조 및 열안정성을 FTIR, $^1H$ NMR, TGA 분석을 통하여 확인하였다. 또한 IHTM 음이온교환막의 함수율, 이온교환용량, 전기저항, 전기전도도를 중량법, 적정법 및 LCR 미터로 측정하였으며, 전바나듐 레독스-흐름 전지의 효율 실험을 하였다. 막의 이온교환용량, 전기저항, 전기전도도는 각각 1.10 meq/g, $1.98{\Omega}{\cdot}cm^2$, 0.009 S/cm로 우수하게 나타났으며, 전바나듐 레독스-흐름 전지의 충 방전효율, 전압효율 및 에너지효율은 각각 96.5, 74.6, 70.0%이었다.

The IPA-co-HDO-co-(TPA/MA) copolymers for all-vanadium redox flow battery were synthesized by melt condensation polymerization using isophthalic acid(IPA), 1,6-hexandiol (HDO), terephthalic acid(TPA) and maleic anhydride(MA). The amination of chloromethylated IPA-co- HDO-co-(TPA/MA)(CIHTM) copolymer was carried out using trimethylamine, and the anion exchange membrane was also prepared by UV crosslinking reaction. The structure and thermal stability of IHTM copolymers were confirmed by FTIR, $^1H$ NMR, and TGA analysis. The anion membrane properties such as water uptake, ion exchange capacity, electric resistance and electrical conductivity, were measured by gravimetry, titration and LCR meter. The efficiency of the all-vanadium redox flow battery was analyzed. The ion exchange capacity, electric resistance and electrical conductivity were 1.10 meq/g, $1.98{\Omega}{\cdot}cm^2$, and 0.009 S/cm, respectively. The efficiency of charge-discharge, voltage, and energy for the allvanadium redox flow battery were 96.5, 74.6, 70.0%, respectively.

키워드

참고문헌

  1. V. M. Barragan, J. P. G. Villaluenga, M. P. Godino, M. A. Izquierdo-Gil, C. Ruiz-Bauza, and B. Seoane, J. Colloid Interface Sci., 333, 497 (2009). https://doi.org/10.1016/j.jcis.2009.02.015
  2. D.H. Lee, Y. S. Kang, and J. H. Kim, Macromol. Res., 17, 104 (2009). https://doi.org/10.1007/BF03218662
  3. H. Ohya, T. Ohto, T. Sawamura, H. Honda, K. Matsumoto, and Y. Negish, Denki Kagaku, 56, 34 (1988).
  4. F. de Korosy and J. Shorr, DeChema Mogr., 47, 477 (1992).
  5. A. S. Kang, J. Korean Ind. Eng. Chem., 4, 393 (1993).
  6. Y. W. Lee, Y. Y. Kim, H. C. Kang, S. J. Shin, B. C. Lee, and A. S. Kang, Memb. J., 5, 109 (1995).
  7. Z. Mai, H. Zhang, X. Li, S. Xiao, and H. Zhang, J. Power Sources, 10, 1016 (2010).
  8. J. Qiu, M. Li, J. Ni, M. Zhai, J. Peng, L. Xu, H. Zhou, J. Li, and G. Wei, J. Memb. Sci., 297, 174 (2007). https://doi.org/10.1016/j.memsci.2007.03.042
  9. Q. Luo, H. Zhang, J. Chen, P. Qian, and Y. Zhai, J. Memb. Sci., 311, 98 (2008). https://doi.org/10.1016/j.memsci.2007.11.055
  10. F. Grossmith, P. Llewellyn, A. G. Fane, and M. S. Kazacos, Proc. Electrochem. Soc. Symp., Honolulu, Oct., p 363 (1988).
  11. T. Mohammadi and M. S. Kazacos, J. Appl. Electrochem., 27, 153 (1997). https://doi.org/10.1023/A:1018495722379
  12. I. H. Cho, K. W. Baek, C. S. Lee, Y. C. Nho, S. K. Yoon, and T. S. Hwang, Polymer(Korea), 31, 1 (2007).
  13. K. J. Choi, J. H. Choi, E. H. Hwang, Y. W. Rhee, and T. S. Hwang, Polymer(Korea), 31, 247 (2007).
  14. D. J. Kim, B. J. Chang, J. H. Kim, S. B. Lee, and H. J. Joo, Memb. J., 16, 221 (2006).
  15. B. Y. Jeong, S. H. Song, K. W. Baek, I. H. Cho, and T. S. Hwang, Polymer(Korea), 30, 486 (2006).
  16. X Luo, Z. Lu, Z. Wu, W. Zhu, and X. Qui, J. Phys. Chem. B, 109, 20310 (2005). https://doi.org/10.1021/jp054092w
  17. M. S. Kazacos, G. Kazacos, G. Poon, and H. Verseema, Int. Energ. Convers. Manage., 51, 2816 (2010). https://doi.org/10.1016/j.enconman.2010.06.019
  18. S. Mallakpour and Z. Rafiee, React. Funct. Polym., 69, 252 (2009). https://doi.org/10.1016/j.reactfunctpolym.2009.01.003
  19. S. Mallakpour and Z. Rafiee, React. Funct. Polym., 68, 91 (2008). https://doi.org/10.1016/j.reactfunctpolym.2007.10.007
  20. S. Mallakpour and Z. Rafiee, Polymer, 49, 3007 (2008). https://doi.org/10.1016/j.polymer.2008.05.013
  21. J. Won, H. D. Cho, and Y. S. Kang, Macromol. Res., 17, 725 (2009). https://doi.org/10.1007/BF03218605
  22. C. H. Park, D. W. Shin, and Y. M. Lee, Macromol. Res., 17, 825 (2009). https://doi.org/10.1007/BF03218622
  23. D. H. Kim and S. C. Kim, Macromol. Res., 16, 457 (2008). https://doi.org/10.1007/BF03218545