• Title/Summary/Keyword: membrane action

Search Result 549, Processing Time 0.02 seconds

Styraxjaponoside A and B, Antifungal Lignan Glycosides Isolated from Styrax japonica S. et Z.

  • Park, Cana;Cho, Jae-Yong;Hwang, Bo-Mi;Hwang, In-Sok;Kim, Mi-Ran;Woo, Eun-Rhan;Lee, Dong-Gun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.420-425
    • /
    • 2010
  • The antifungal effects and action mechanisms of styraxjaponoside A and B were investigated. Devoid of hemolytic effect, the compounds had significant effect against several human pathogenic fungal strains, with energy-independent manners. To understand the action mechanisms of the compounds, the flow cytometric analysis plotting the forward scatter and the side scatter, $DiBAC_4$(3) staining and DPH fluorescence analysis were conducted. The results indicated that the actions of the compounds were dependent upon the membrane-active mechanisms. The present study suggests that styraxjaponoside A and B exert their antimicrobial effects via membrane-disruptive mechanisms.

Studies on the Enzyme-releasing Mechanism of Aminoglycosides from Pancreas (Aminoglycosides의 취효소 분비항진기전에 관한 연구)

  • Shim, Ho-Shik;Kim, Kyung-Hwan;Hong, Sa-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.71-76
    • /
    • 1983
  • Aminoglycoside antibiotics are reported to enhance the amylase release from isolated slices of pancreas in vitro and the mode of action of aminoglycosides on amylase release is considered different from those of acetylcholine or cholecystokinin(CCK), i.e., electronmicroscopically intact zymogen granules are appeared in the lumen of pancreatic acini by treatment of aminoglycosides. It is known that atropine blocks the secretagogue effect of acetylcholine, and phenoxybenzamine is reported to block the effects of CCK or its analogue caerulein. Present study was undertaken to investigate the mode of action of aminoglycosides on the amylase release using atropine, phenoxybenzamine and propranolol as a membrane stabilizing agent in slices of chicken pancreas. The results are summarized as follows : 1) Streptomycin and kanamycin increased the amylase release significantly from slices of chicken pancreas. 2) The effect of streptomycin was inhibited by atropine but not by phenoxybenzamine or propranolol. 3) The amylase release by acetylcholine was blocked by atropine tut the effect of cholecystokinin octapeptide(CCK-8) was not influenced by atropine, phenoxybenzamine or propranolol. 4) Pretreatment of streptomycin enhanced the secretagogue effect of acetylcholine or CCK-8. From these results it is suggested that amylase releasing effects of aminoglycosides are mediated in part by cholinergic stimulation and in part by membrane alteration and these effects are enhanced by acetylcholine or cholecystokinin.

  • PDF

Antimicrobial Peptides (AMPs): Peptide Structure and Mode of Action

  • Park, Yoon-Kyung;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.507-516
    • /
    • 2005
  • Antimicrobial peptides (AMPs) have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum. Their amino acid composition, amphipathicity, cationic charge, and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of AMP activity, their relevance to resolving how peptides damage and kill microorganisms still needs to be clarified. Moreover, many AMPs employ sophisticated and dynamic mechanisms of action to carry out their likely roles in antimicrobial host defense. Recently, it has been speculated that transmembrane pore formation is not the only mechanism of microbial killing by AMPs. In fact, several observations suggest that translocated AMPs can alter cytoplasmic membrane septum formation, reduce cell-wall, nucleic acid, and protein synthesis, and inhibit enzymatic activity. In this review, we present the structures of several AMPs as well as models of how AMPs induce pore formation. AMPs have received special attention as a possible alternative way to combat antibiotic-resistant bacterial strains. It may be possible to design synthetic AMPs with enhanced activity for microbial cells, especially those with antibiotic resistance, as well as synergistic effects with conventional antibiotic agents that lack cytotoxic or hemolytic activity.

CHANGES IN ELECTROPHYSIOLOGICAL PROPERTIES OF NEUROBIOTIN-LABELED PYRAMIDAL CELLS OF HIPPOCAMPUS RECORDED IN VIVO (마취된 흰쥐 해마신경세포에서 Neurobiotin 이온주입으로 인한 신경세포의 생리적 특성의 변화)

  • Lee, Hye-Sook;Lee, Maan-Gee-G.;Kim, Young-Jin;Choi, Byung-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.218-231
    • /
    • 1999
  • Pyramidal cells in the hippocampal CA area were recorded from and filled with neurobiotin in anesthetized rats. The extent of their dendrites and the electropharmacological properties of membrane as well as the effect before and after neurobiotin injection were examined. Pyramidal cells had a high resting membrane potential, a low input resistance, and a large amplitude action potential. A afterhyperpolarization was followed a single action potential. Most pyramidal cells did not display a spontaneous firing. Pyramidal cell displayed weak inward rectification and anodal break excitation in response to negative current injection into the cell. Membrane properties of recorded neurons before and after neurobiotin injection with consecutive current injection were compared. Some properties were significantly increased after labelling(P>0.05); the duration and amplitude of sustained AHP, input resistance, and the number of action potentials for simultaneous intra- and extracellular stimulations. Neurobiotin-filled neurons showed pyramidal morphology. Cells were generally bipolar dendrite processes ramifying in stratum lacunosum-moleculare, radiatum, and oriens.

  • PDF

Development of Membrane Strip Assay System for Lipoprotein Cholesterol Based on Liquid-Phase Enzyme Reactions (액상 효소반응을 이용한 Membrane Strip 형 Cholesterol 측정시스템의 개발)

  • 신인수;목락선;장미라;백세환
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.577-584
    • /
    • 1998
  • A sensitive membrane strip assay for plasma lipoprotein cholesterol that can be performed without handling reagents has been investigated. We previously developed an assay system with immobilized enzymes (cholesterol esterase and cholesterol oxidase) on the surfaces of nitrocellulose membrane(1). In such a case, the amount of enzymes present on the membrane was limited by its surface area and, thus, the detection capability was relatively poor (> 50 mg/dL cholesterol). To overcome this problem, we devised a new system with non-immobilized enzymes by placing them within interstitial spaces of a celullose membrane pad in a dry state. Upon contact with sample medium, the enzymes were immediately dissolved and participated in the reactions with cholesterol in a liquid phase. We constructed a user-friendly system consisting of four membrane pads fro sample application, cholesterol decomposition, color development as signal, and medium absorption to invoke a continuous flow (sequential location from the bottom). A sample containing lipoproteins was added into the application pad by capillary action and transferred to the next pad for decomposition. The decomposition pad (namely, enzyme pad) contained a detergent (sodium cholate) for the destruction of lipoprotein particles, the two enzymes for cholesterol decomposition, and a chromogen (3,3'-diaminobenzidine). As a consequence of the enzyme reactions, hydrogen peroxide was produced, and then reacted in the presence of the chromogen with horseradish peroxidase immobilized on the signal generation pad. Finally, a colorimetric signal directly proportional to the cholesterol concentration was produced. The detection limit determined from this system under optimal conditions was at least 2 times lower than of the enzyme-immobilized system.

  • PDF

A Study on the Response Propogation of Biological Action Potential (생체의 활동전위 전도에 관한 연구)

  • Che, Gyu-Shik;Moon, Myung-Ho;Chang, Won-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.4
    • /
    • pp.562-570
    • /
    • 2010
  • The transmission phenomenon of neuron action potential due to exterior stimulation is somewhat identical to electrical reaction configuration. Therefore, I tried to analyze the transmission status of membrane excitation, by introducing electrical concept to this issue in this paper. First of all, I researched the complex electrical status of axon, and then simplified the electrical circuit into pure resistance circuit under the assumption that it was reasonable in practice. And I derived the transmission status of exciting action potential through the simplified circuits using electical theory and mathematical concept. I calculated overshoot potential of a certain portion and then confirmed that it excited neighbor portion and made it to be transmitted using the proposed data which was typical in point of biological and electrical view to verify this result.

Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.610-617
    • /
    • 2016
  • Candidiasis has posed a serious health risk to immunocompromised patients owing to the increase in resistant yeasts, and Candida albicans is the prominent pathogen of fungal infections. Therefore, there is a critical need for the discovery and characterization of novel antifungals to treat infections caused by C. albicans. In the present study, we report on the antifungal activity of the ethanol extract from Salvia miltiorrhiza against C. albicans and the possible mode of action against C. albicans. The increase in the membrane permeability was evidenced by changes in diphenylhexatriene binding and release of both 260-nm-absorbing intracellular materials and protein. In addition, inhibition of cell wall synthesis was demonstrated by the enhanced minimal inhibitory concentration in the presence of sorbitol and reduced (1,3)-β-D-glucan synthase activity. The above evidence supports the notion that S. miltiorrhiza has antifungal activity against C. albicans by the synergistic activity of targeting the cell membrane and cell wall. These findings indicate that S. miltiorrhiza displays effective activity against C. albicans in vitro and merits further investigation to treat C. albicans-associated infections.

Effect of Ginseng Saponin, Gypsophila Saponin, and Detergents on Volume Changes and Fragility of Red Blood Cells (인삼(人蔘) Saponin, 은시호(銀柴胡) Saponin 및 계면활성제(界面活性劑)가 적혈구(赤血球)의 용적변화(容積變化) 및 Fragility에 미치는 영향(影響))

  • Lee, Shin-Woong;Lee, Jeung-Soo;Lee, Soo-Kun;Ok, Chang-Kun;Kim, Young-Hie
    • YAKHAK HOEJI
    • /
    • v.33 no.1
    • /
    • pp.15-19
    • /
    • 1989
  • The effects of Gypsophila saponin, sodium dodecylsulfate (SDS) and Triton X-100 on volume changes and fragility of red blood cells were compared to ginseng saponin to elucidate whether there are any difference in their action on membrane lipid. Cell volume was decreased to about 38% in 1M NaCl and increased to about 20% in 1/10M NaCl. Hematocrit value was decreased by Gypsophila saponin, SDS, and Triton X-100 which caused hemolysis in isotonic NaCl solution. These detergents also inhibited increase of cell volume and accelerated hemolysis in hypotonic solution. However, ginseng saponin did not influence to osmotic volume changes and hemolysis of red blood cells. These results suggest that the disruptive effect of plant saponin on membrane barriers induced by removing membrane lipid is different from their source and ginseng saponin has very low affinity to membrane lipid.

  • PDF

Differential Effect of Harmalol and Deprenyl on Dopamine-Induced Mitochondrial Membrane Permeability Change in PC12 Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of ${\beta}$-carbolines (harmaline and harmalol) and deprenyl on the dopamine-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. Cell death due to 250 4{\mu}$M dopamine was inhibited by caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, ascorbate, superoxide dismutase, catalase and carboxy-PTIO). ${\beta}$-Carbolines prevented the dopamine-induced cell death in PCl2 cells, while deprenyl did not inhibit cell death. ${\beta}$-Carbolines decreased the condensation and fragmentation of nuclei caused by dopamine in PC12 cells. ${\beta}$-Carbolines inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, formation of reactive oxygen species and depletion of GSH caused by dopamine in PC12 cells, whereas deprenyl did not decrease dopamine-induced mitochondrial damage. ${\beta}$-Carbolines, deprenyl and antioxidants depressed the formation of nitric oxide and melanin in dopamine-treated PC12 cells. The results suggest that cell death due to dopamine PC12 cells is mediated by caspase-8, -9 and -3. Unlike deprenyl, ${\beta}$-carbolines may attenuate the dopamineinduced cell death in PC12 cells by suppressing change in the mitochondrial membrane permeability through inhibition of the toxic action of reactive oxygen and nitrogen species.

Effects of Hesperidin Are Not Associated with Changes in Basal Synaptic Transmission, Theta-burst LTP, and Membrane Excitability in CA1 Neuron

  • Baek, Jin-Hee;Kim, Jae-Ick;Kaang, Bong-Kiun
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.357-362
    • /
    • 2009
  • Hesperidin, the most abundant polyphenolic compound found in citrus fruits, has been known to possess neuroprotective, sedative, and anticonvulsive effects on the nervous system. In a recent electrophysiological study, it was reported that hesperidin induced biphasic change in population spike amplitude in hippocampal CA1 neurons in response to both single spike stimuli and theta-burst stimulation depending on its concentration. However, the precise mechanism by which hesperidin acts on neuronal functions has not been fully elucidated. Here, using whole-cell patch-clamp recording, we revealed that hesperidin did not affect excitatory synaptic activities such as basal synaptic transmission and theta-burst LTP. Moreover, in a current injection experiment, spike number, resting membrane potential and action potential threshold also remained unchanged. Taken together, these results indicate that the effects of hesperidin on the neuronal functions such as spiking activity might not be attributable to either modification of excitatory synaptic transmissions or changes in membrane excitability in hippocampal CA1 neuron.