Browse > Article
http://dx.doi.org/10.4014/jmb.1511.11009

Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity  

Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University)
Kim, Younhee (Department of Korean Medicine, Semyung University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.3, 2016 , pp. 610-617 More about this Journal
Abstract
Candidiasis has posed a serious health risk to immunocompromised patients owing to the increase in resistant yeasts, and Candida albicans is the prominent pathogen of fungal infections. Therefore, there is a critical need for the discovery and characterization of novel antifungals to treat infections caused by C. albicans. In the present study, we report on the antifungal activity of the ethanol extract from Salvia miltiorrhiza against C. albicans and the possible mode of action against C. albicans. The increase in the membrane permeability was evidenced by changes in diphenylhexatriene binding and release of both 260-nm-absorbing intracellular materials and protein. In addition, inhibition of cell wall synthesis was demonstrated by the enhanced minimal inhibitory concentration in the presence of sorbitol and reduced (1,3)-β-D-glucan synthase activity. The above evidence supports the notion that S. miltiorrhiza has antifungal activity against C. albicans by the synergistic activity of targeting the cell membrane and cell wall. These findings indicate that S. miltiorrhiza displays effective activity against C. albicans in vitro and merits further investigation to treat C. albicans-associated infections.
Keywords
Antifungal activity; Candida albicans; membrane permeability; (1,3)-β-D-glucan synthase; Salvia miltiorrhiza;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adams JD, Wang R, Yang J, Lien EJ. 2006. Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions. Chin. Med. 1: 3.   DOI
2 Aricha B, Fishov I, Cohen Z, Sikron N, Pesakhov S, Khozin-Goldberg I, et al. 2004. Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. J. Bacteriol. 186: 4638-4644.   DOI
3 Carrillo-Muñoz AJ, Giusiano G, Ezkurra PA, Quindós G. 2006. Antifungal agents: mode of action in yeast cells. Rev. Esp. Quimioterap. 19: 130-139.
4 Carson CF, Mee BJ, Riley TV. 2002. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 46: 1914-1920.   DOI
5 Clinical Laboratory Standards Institute. 2008. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard M27-A3, 3rd Ed. Clinical and Laboratory Standards Institute, Wayne, PA.
6 Ghannoum MA, Janini G, Khamis L, Radwan SS. 1986. Dimorphism-associated variations in the lipid composition of Candida albicans. J. Gen. Microbiol. 132: 2367-2375.
7 Cowan MM. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582.
8 Dufourc EJ. 2008. Sterols and membrane dynamics. J. Chem. Biol. 1: 63-77.   DOI
9 Frost DJ, Brandt KD, Cugier D, Goldman R. 1995. A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J. Antibiot. 48: 306-310.   DOI
10 Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, Burke MD. 2012. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA 109: 2234–2239.   DOI
11 Han JY, Fan JY, Horie Y, Miura S, Cui DH, Ishii H, et al. 2008. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol. Ther. 117: 280-295.   DOI
12 Han Y, Joo I. 2013. Antifungal effect of tanshinone from Salvia miltiorrhiza against disseminated candidiasis. Yakhak Hoeji 57: 119-124.
13 Khan MSA, Ahmad I, Cameotra SS. 2013. Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. AMB Express 3: 54.   DOI
14 Krcmery V, Barnes AJ. 2002. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J. Hosp. Infect. 50: 243-260.   DOI
15 Kurtz M, Douglas C. 1997. Lipopeptide inhibitors of fungal glucan synthase. J. Med. Vet. Mycol. 35: 79-86.   DOI
16 Li YG, Song L, Liu M, Hu ZB, Wang ZT. 2009. Advancement in analysis of Salviae miltiorrhizae Radix et Rhizoma (Danshen). J. Chromatogr. A 1216: 1941-1953.   DOI
17 Lin TH, Hsieh CL. 2010. Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction. Chin. Med. 5: 22-27.   DOI
18 Liu M, Seidel V, Katerere DR, Gray AI. 2007. Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeast. Methods 42: 325-329.   DOI
19 Munro S. 2003. Lipid rafts: elusive or illusive? Cell 115: 377-388.   DOI
20 Marczak A. 2009. Fluorescence anisotropy of membrane fluidity probes in human erythrocytes incubated with anthracyclines and glutaraldehyde. Bioelectrochemistry 74: 236-239.   DOI
21 Parks LW, Casey WM. 1995. Physiological implications of sterol biosynthesis in yeast. Annu. Rev. Microbiol. 49: 95-116.   DOI
22 Pfaller MA, Diekema DJ. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20: 133-163.   DOI
23 Pfaller MA, Pappas PG, Wingard JR. 2006. Invasive fungal pathogens: current epidemiological trends. Clin. Infect. Dis. 43: S3-S14.   DOI
24 Repáková J, Holopainen JM, Morrow MR, McDonald MC, Capková P, Vattulainen I. 2005. Influence of DPH on the structure and dynamics of a DPPC bilayer. Biophys. J. 88: 3398-3410.   DOI
25 Shapiro HM. 1995. Parameters and probes, p. 229. In Practical Flow Cytometry, 3rd Ed. Wiley, New York.
26 Shapiro RS, Robbins N, Cowen LE. 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75: 213-267.   DOI
27 Varona R, Pérez P, Durán A. 1983. Effect of papulacandin B on β-glucan synthesis in Schizosaccharomyces pombe. FEMS Microbiol. Lett. 20: 243-247.
28 Shedletzky E, Unger C, Delmer DP. 1997. A microtiter-based fluorescence assay for (1,3)-β-glucan synthases. Anal. Biochem. 249: 88-93.   DOI
29 Vandeputte P, Ferrari S, Coste AT. 2012. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol. 2012: 1-26.   DOI
30 Sung B, Chung HS, Kim M, Kang YJ, Kim DH, Hwang SY, et al. 2015. Cytotoxic effects of solvent-extracted active components of Salvia miltiorrhiza Bunge on human cancer cell lines. Exp. Ther. Med. 9: 1421-1428.   DOI
31 Wang S, Beechem JM, Gratton E, Glaser M. 1991. Orientational distribution of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles as determined by global analysis of frequency domain fluorimetry data. Biochemistry 30: 5565-5572.   DOI
32 White TC, Marr KA, Bowden RA. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382-402.
33 Zhao J, Lou J, Mou Y, Li P, Wu J, Zhou L. 2011. Diterpenoid tanshinones and phenolic acids from cultured hairy roots of Salvia miltiorrhiza Bunge and their antimicrobial activities. Molecules 16: 2259-2267.   DOI