• Title/Summary/Keyword: medium layer

Search Result 730, Processing Time 0.032 seconds

A New Cross-Layer QoS-Provisioning Architecture in Wireless Multimedia Sensor Networks

  • Sohn, Kyungho;Kim, Young Yong;Saxena, Navrati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5286-5306
    • /
    • 2016
  • Emerging applications in automation, medical imaging, traffic monitoring and surveillance need real-time data transmission over Wireless Sensor Networks (WSNs). Guaranteeing Quality of Service (QoS) for real-time traffic over WSNs creates new challenges. Rapid penetration of smart devices, standardization of Machine Type Communications (MTC) in next generation 5G wireless networks have added new dimensions in these challenges. In order to satisfy such precise QoS constraints, in this paper, we propose a new cross-layer QoS-provisioning strategy in Wireless Multimedia Sensor Networks (WMSNs). The network layer performs statistical estimation of sensory QoS parameters. Identifying QoS-routing problem with multiple objectives as NP-complete, it discovers near-optimal QoS-routes by using evolutionary genetic algorithms. Subsequently, the Medium Access Control (MAC) layer classifies the packets, automatically adapts the contention window, based on QoS requirements and transmits the data by using routing information obtained by the network layer. Performance analysis is carried out to get an estimate of the overall system. Through the simulation results, it is manifested that the proposed strategy is able to achieve better throughput and significant lower delay, at the expense of negligible energy consumption, in comparison to existing WMSN QoS protocols.

Effect of Adhesion layer on the Optical Scattering Properties of Plasmonic Au Nanodisc (접착층을 고려한 플라즈모닉 금 나노 디스크의 광산란 특성)

  • Kim, Jooyoung;Cho, Kyuman;Lee, Kyeong-Seok
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.464-470
    • /
    • 2008
  • Metallic nanostructures have great potential for bio-chemical sensor applications due to the excitation of localized surface plasmon and its sensitive response to environmental change. Unlike the commonly explored absorption-based sensing, the optical scattering provides single particle detection scheme. For the localized surface plasmon resonance spectroscopy, the metallic nanostructures with controlled shape and size have been usually fabricated on adhesion-layer pre-coated transparent glass substrates. In this study, we calculated the optical scattering properties of plasmonic Au nanodisc using a discrete dipole approximation method and analyzed the effect of adhesion layer on them. Our result also indicates that there is a trade-off between the surface plasmon damping and the capability of supporting nanostructures in determining the optimal thickness of adhesion layer. Marginal thickness of Ti adhesion layer for supporting Au nanostructures fabricated on a silica glass substrate was experimentally analyzed by an adhesion strength test using a nano-indentation technique.

Low-Latency Handover Scheme Using Exponential Smoothing Method in WiBro Networks (와이브로 망에서 지수평활법을 이용한 핸드오버 지연 단축 기법)

  • Pyo, Se-Hwan;Choi, Yong-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.91-99
    • /
    • 2009
  • Development of high-speed Internet services and the increased supply of mobile devices have become the key factor for the acceleration of ubiquitous technology. WiBro system, formed with lP backbone network, is a MBWA technology which provides high-speed multimedia service in a possibly broader coverage than Wireless LAN can offer. Wireless telecommunication environment needs not only mobility support in Layer 2 but also mobility management protocol in Layer 3 and has to minimize handover latency to provide seamless mobile services. In this paper, we propose a fast cross-layer handover scheme based on signal strength prediction in WiBro environment. The signal strength is measured at regular intervals and future value of the strength is predicted by Exponential Smoothing Method. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency is reduced. Simulation results demonstrate that the proposed scheme predicts that future signal level accurately and reduces the total handover latency.

  • PDF

Medium Access Control Design for UWB Communication Systems: Review and Trends

  • Nardis, Luca De;Di Benedetto, Maria-Gabriella
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.386-393
    • /
    • 2003
  • Future wireless networks are expected to achieve high bit rates at low cost, enabling multimedia and QoS-based services over the wireless medium. The impulse radio ultra-wide band (IR-UWB) technique is a promising candidate in the deployment of such networks, thanks to its potential robustness and capacity. In the past, most of the UWB research focused on hardware and physical layer aspects in order to solve the technological challenges posed by IR-UWB. UWB peculiar characteristics may, however, also stimulate innovative higher layers’ design. This work addresses MAC issues for UWB communication systems. Key areas such as medium sharing, MAC organization, packet scheduling and power control are reviewed. The impact of UWB on the above functions is discussed, and areas which require UWB specific design are identified. Finally, novel MAC functions enabled by UWB specific features, i.e., precise ranging and positioning, are presented.

Implementation and Experimental Evaluation of Bandwidth Allocation Scheme on PROFIBUS (PROFIBUS에서 대역폭 할당 기법 구현 및 실험적 평가)

  • Hong, Seung-Ho;Kim, Yu-Chul;Kim, Ji-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.943-954
    • /
    • 2000
  • Fieldbus is the lowest level industrial network in the communication hierarchy of factory automation and distributed process control systems. Data generated from field devices are largely divided into three categories : time-critical, periodic and time-available data. Because these data share one fieldbus medium, it needs a method that allocates these data to the bandwidth-limited fieldbus medium. This paper introduces an implementation method of bandwidth allocation scheme on PROFIBUS. In order to implement bandwidth allocation scheme on PROFIBUS, the following functions need to be supplemented on the FDL(Fieldbus Datalink Layer) protocol: (i) separation of medium bandwidth into periodic and non-periodic intervals, (ii) synchronization of node timers over a local link. In order to examine the validity of bandwidth allocation scheme on PROFIBUS, this paper develops an experimental model of a network system. The results obtained from the experimental model show that the bandwidth allocation scheme satisfies the performance requirement of time-critical, periodic and time-available data.

  • PDF

EFFECTS OF SORET AND DUFOUR ON NATURAL CONVECTIVE FLUID FLOW PAST A VERTICAL PLATE EMBEDDED IN POROUS MEDIUM IN PRESENCE OF THERMAL RADIATION VIA FEM

  • RAJU, R. SRINIVASA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.309-332
    • /
    • 2016
  • Finite element method has been applied to solve the fundamental governing equations of natural convective, electrically conducting, incompressible fluid flow past an infinite vertical plate surrounded by porous medium in presence of thermal radiation, viscous dissipation, Soret and Dufour effects. In this research work, the results of coupled partial differential equations are found numerically by applying finite element technique. The sway of significant parameters such as Soret number, Dufour number, Grashof number for heat and mass transfer, Magnetic field parameter, Thermal radiation parameter, Permeability parameter on velocity, temperature and concentration evaluations in the boundary layer region are examined in detail and the results are shown in graphically. Furthermore, the effect of these parameters on local skin friction coefficient, local Nusselt number and Sherwood numbers is also investigated. A very good agreement is noticed between the present results and previous published works in some limiting cases.

Effects of Cyclic-AMP and Tannin on the Amylase Biosynthesis Induced by Gibberellin in Aleurone Layer II. Amylase (Cyclic-AMP와 탄닌이 지베레린으로 유도되는 Amylase 생합성에 미치는 영향 II. Amylase)

  • 권영명
    • Journal of Plant Biology
    • /
    • v.21 no.1_4
    • /
    • pp.21-27
    • /
    • 1978
  • The effect of tannic acid on GAs and cyclic-AMP promoted amylase induction in barley aleurone layers was examined. Of a variety of adenine compounds, only cyclic-AMP and ADP showed significant activity, and these activities were promoted by addition of theophylline to the incubation medium. When aleurone layers of barley endosperm tissues were incubated with GAs in the presence of tannic acid, the amylase activity in the incubation medium was reduced. Cyclic-AMP induced amylase activity was also reduced by additiion of tannic acid. The cyclic-AMP response promoted was more sensitive to tannin inhibition than GAs response. The inhibitory effect of tannic acid shwoed reversibility by addition of higher concentration of GAs or cyclic-AMP. The tannic acid effect on GAs response was also recovered by addition of a higher concentration of cyclic-AMP. Experiment with polyacrylamide disc electrophoresis showed different isozyme patterns according to the additions in the incubation medium. Inhibitory effects of decursinol and coumarin was compared with that of tannic acid. They showed different zymogram patterns.

  • PDF

Heating Characteristics of Ondol using Heat Pump-Latent Heat Storage System (열펌프-잠열축열시스템을 이용한 온돌의 난방특성)

  • Kim, M.H.;Song, H.K.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2000
  • In these days the hot water circulating Ondol using the fossil fuel boiler is the heating system for the most of the Korean residents. Then it is installed without the heat storage medium in the Ondol heating layer, but the Korean traditional Ondol had been composed with the heat storage medium. The Ondol room without heat storage medium could not be comfortable because the room air temperature is not only changed unstably but also it has a defect too much fuel consumption. Therefore in this study the heat pump-latent heat storage Ondol as the new type of Ondol system was developed to solve these problems mentioned above, and the COP of the heat pump (Coefficient Of Performance), the latent heat storage characteristics in the new type of Ondol system and the temperature variation in the Ondol room with the ambient temperature were analyzed.

  • PDF

A Distributed Precedence Queue Mechanism to Assign Efficient Bandwidth in CAN Networks (CAN 네트워크상의 효율적인 대역 할당을 위한 분산 선행대기 열 기법)

  • 최호식;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1058-1064
    • /
    • 2004
  • This paper presents a distributed precedence queue mechanism to resolve unexpected transmission delay of a lower priority transaction in a CAN based system, which keeps a fixed priority in data transaction. The mechanism is implemented in the upper sub-layer of the data link layer(DLL), which is fully compatible with the original medium access control layer protocol of CAN. Thus the mechanism can be implemented dynamically while the data transactions are going on without any hardware modification. The CAN protocol was originally developed to be used in the automotive industry, and it was recently applied for a broader class of automated factories. Even though CAN is able to satisfy most of real-time requirements found in automated environments, it is not to enforce either a fair subdivision of the network bandwidth among the stations or a satisfactory distribution of the access delays in message transmission. The proposed solution provides a superset of the CAN logical link layer control, which can coexist with the older CAN applications. Through the real experiments, effectiveness of the proposed mechanism is verified.

A Dynamic Precedence Queue Mechanism to Improve Transmission Efficiency in CAN Networks

  • Yun, Jae-Mu;Choi, Ho-Seek;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.761-766
    • /
    • 2005
  • This paper presents a dynamic precedence queue mechanism to resolve unexpected transmission delay of a lower priority transaction in a CAN based system which keeps a fixed priority in data transactions. The mechanism is implemented in the upper sub-layer of the data link layer (DLL), which is fully compatible with the original medium access control layer protocol of CAN. Thus the mechanism can be implemented dynamically while the data transactions are going on without any hardware modification. The CAN protocol was originally developed to be used in the automotive industry and it was recently applied for a broader class of automated factories. Even though CAN is able to satisfy most of real-time requirements found in automated environments, it is not to enforce either a fair subdivision of the network bandwidth among the stations or a satisfactory distribution of the access delays in message transmissions. The proposed solution provides a superset of the CAN logical link layer control, which can coexist with the older CAN applications. Through the real experiments, effectiveness of the proposed mechanism is verified.

  • PDF