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ABSTRACT. Finite element method has been applied to solve the fundamental governing equa-
tions of natural convective, electrically conducting, incompressible fluid flow past an infinite
vertical plate surrounded by porous medium in presence of thermal radiation, viscous dissipa-
tion, Soret and Dufour effects. In this research work, the results of coupled partial differential
equations are found numerically by applying finite element technique. The sway of significant
parameters such as Soret number, Dufour number, Grashof number for heat and mass transfer,
Magnetic field parameter, Thermal radiation parameter, Permeability parameter on velocity,
temperature and concentration evaluations in the boundarylayer region are examined in detail
and the results are shown in graphically. Furthermore, the effect of these parameters on local
skin friction coefficient, local Nusselt number and Sherwood numbers is also investigated. A
very good agreement is noticed between the present results and previous published works in
some limiting cases.

1. INTRODUCTION

1.1. Literature Review of Natural Convection. Natural convection flow encouraged by ther-
mal and solutal buoyancy forces acting over bodies with different geometries in a fluid soaked
porous medium is prevalent in many natural phenomena and hasassorted and wide range of
industrial applications. For example, in atmospheric flows, the occurrence of water or pure air
is impossible because some foreign mass may be present either logically or mixed with air or
water due to industrial productions. Natural processes such as vaporization of mist and fog,
photosynthesis, drying of porous solids, reduction of toxic waste in water bodies, transpiration,
sea-wind pattern (where upward convection is modified by Coriolis forces) and formation of
ocean currents [1] happens due to thermal and solutal buoyancy forces urbanized as a result of
difference in concentration or temperature or a combination of these two. Such configuration
is also encountered in several practical systems for industry placed applications viz. cooling
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of molten metals, insulation systems, petroleum reservoirs, heat exchanger devices, chemical
catalytic reactors, filtration and processes, nuclear waste repositories, desert coolers, frost for-
mation in vertical channels, wet bulb thermometers etc. A numerical study was Garoosi et al.
[2] carried out concerning natural and mixed convection heat transfer of nanofluid in a two-
dimensional square cavity with numerous pairs of heat source-sinks. In this research, authors
solved two-dimensional Navier–Stokes, energy and volume fraction equations by applying the
finite volume method. Garoosi et al. [3] studied heat transfer natural convection of nanofluid
in a two-dimensional square cavity containing numerous pairs of heater and coolers (HACs)
using finite volume discretization method. Free convectiveheat and mass transfer in a steady
two-dimensional magnetohydrodynamic fluid flow over a stretching vertical surface embedded
in porous medium was studied by Rashidi et al. [4] using homotopy analysis method. The ef-
fect of non-uniform magnetic field on nanofluid forced convection heat transfer in a lid driven
semi-annulus was discussed by Sheikholeslami et al. [5]. Inthis paper, authors used control
volume based finite element method to solve the governing equations in the form of stream
function-vorticity formulation for the thermophoresis and Brownian motion effects are taken
into account. Rashidi et al. [6] studied the effect of magnetic field on natural convection sur-
face boundary condition over a flat plate applying the one parameter group method. Rashidi
et al. [7] discussed the natural convection flow of an incompressible third grade fluid between
two parallel plates. In this paper, the governing equationsof the flow were reduced to a set
of nonlinear ordinary differential equations and the resulting nonlinear ordinary differential
equations were solved by multi-step differential transform method. Heat transfer by simulta-
neous natural convection and radiation through an optically thick fluid over a heated vertical
plate have been studied by Kang Cao and John Baker [8] with first-order momentum and ther-
mal non-continuum boundary conditions. The influences of cooled auxiliary plate positions
along the centerline of a vertical channel on combined natural convective in air and radiative
heat transfer were investigated by Andreozzi and Man [9]. Adesanya et al. [10] investigated
the free convective magneto hydrodynamic fluid flow through achannel with time periodic
boundary condition with the effect of Joule dissipation.

1.2. Literature Review of Viscous Dissipation. The impact of viscous dissipation acting an
important role in natural convective flows in various devices which are focused to large deceler-
ation or which activate at high rotational speeds and also instrong gravitational field processes
on large planets, geological processes and in nuclear engineering in association with the cooling
of reactors. Fluid flow of natural convection is often encountered in cooling of nuclear reactors
or in the study of the structure of stars and planets (Srinivasa Raju [11]). Great importance of
temperature and heat transfer study has great importance tothe engineers because of its almost
universal happening in many branches of science and engineering. It is also essential to study
the heat transfer from an asymmetrical surface because irregular surfaces are often nearby in
many functions, such as radiator, heat exchangers and heat transfer enhancement devices. Siva-
iah and Srinivasa Raju [11] studied the effect of Hall current on heat and mass transfer viscous
dissipative fluid flow with heat source using finite element method. Ganga et al. [12] was inves-
tigated the effects of viscous and Ohmic dissipation on steady mathematically two-dimensional
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radiative boundary-layer flow of a incompressible and electrically conducting nanofluid over a
vertical plate internal heat generation/absorption. An unsteady, two-dimensional, hydromag-
netic, laminar free convective boundary-layer flow of an electrically conducting, newtonian, in-
compressible and radiating fluid past an infinite heated vertical porous plate with heat and mass
transfer was analyzed by Ramachandra Prasad and Bhaskar Reddy [13] taking into account the
impact of viscous dissipation. The effect of radiation on two-dimensional free convective MHD
flow of incompressible fluid occupied in a porous medium between two vertical wavy walls in
presence of temperature dependent heat source was investigated by Dada and Disu [14]. In this
research paper authors was assumed the flow consists of a meanpart and a perturbed part. The
resultant differential equations were solved by Differential Transform Method (DTM). The free
convection heat with mass transfer for MHD non-Newtonian Eyring-Powell flow embedded in
a porous medium, over an infinite vertical plate was studied by Eldabe [15] taking into account
the effects of both viscous dissipation and heat source. Micropolar fluid behaviour on steady
MHD mass transfer with free convection through a porous medium with constant heat and
mass fluxes have been studied numerically by Haque et al. [16]. Pal and Talukdar [17] studied
the effect of thermal radiation on an unsteady hydromagnetic convective heat and mass trans-
fer for a viscous fluid past a semi-infinite vertical moving plate embedded in a porous media
in the attendance of heat absorption and first-order chemical reaction of the species by using
Perturbation technique. MHD boundary layer flow and heat transfer of a fluid with variable
viscosity through a porous medium towards a stretching sheet by taking in to the effects of
viscous dissipation in presence of heat source/sink was discussed by Dessie and Kishan [18].
Raju et al. [19] dealt with a steady MHD forced convective flowof a viscous fluid of finite
depth in a saturated porous medium over a fixed horizontal channel with thermally insulated
and impermeable bottom wall in the presence of viscous dissipation and joule heating. Reddy
[20] studied the effects of thermal radiation, viscous dissipation, and Hall current effects on
the hydromagnetic convection flow of an electrically conducting, viscous, incompressible fluid
past over a stretching vertical flat plate.

1.3. Literature Review of Soret and Dufour Effects. When heat and mass transfer arise con-
currently in a moving fluid, the relations between the fluxes and the motivating potentials are
of a more come together nature. Hence an energy flux can be created not only by concentra-
tion gradients but also by temperature gradients. The energy flux caused by a concentration
gradient is named the diffusion thermo (Dufour) effect. On the extra hand, mass fluxes can
also be produced by temperature gradients and this signifiesthe thermal diffusion (Soret) ef-
fect. In the majority of the studies connected to heat and mass transfer processes, the effects
of Soret and Dufour are disregarded on the basis that they areof a lesser order of magnitude
than the effects showed by Fourier’s and Fick’s laws. The Soret effect, for example, has been
employed for isotope separation and in mixture connecting gases with very light molecular
weight (Hydrogen or Helium) and of medium molecular weight (Nitrogen or Air). The Dufour
effect was established to be of order of extensively magnitude such that it cannot be unnoticed
(Eckeret and Drake [21]). Rashidi et al. [22] investigated the combined effects viscous dis-
sipation and Ohmic heating on steady MHD convective and slipflow due to a rotating disk



312 R. S. RAJU

in presence of thermal diffusion and diffusion thermo via HAM. Sheri and Raju [23] stud-
ied the influence of Soret on an unsteady magnetohydrodynamics free convective flow past a
semi-infinite vertical plate in the presence viscous dissipation. The results of thermal radiation
and heat source on an unsteady MHD free convective fluid flow over an infinite vertical plate
in occurrence of thermal-diffusion and diffusion-thermo were discussed by Raju et al. [24].
Rashidi and Erfani [25] studied the effects of thermal-diffusion and diffusion-thermo on com-
bined heat and mass transfer of a steady magnetohydrodynamic convective and slip flow due
to a rotating disk with viscous dissipation and Ohmic heating. The homotopy analysis method
with two auxiliary parameters was employed by Rashidi et al.[26] to examined the effects of
Soret and Dufour on a steady two-dimensional magnetohydrodynamic viscoelastic fluid flow
over a stretching vertical surface in presence of heat and mass transfer. The effects of Soret and
Dufour effects with heat and mass transfer on the steady, laminar mixed convection flow along
a semi-infinite vertical plate surrounded in a micropolar fluid snowed under non-Darcy porous
medium in presence of heat and mass flux conditions were investigated by Srinivasacharya
and RamReddy [27]. Double-diffusive natural convection with Soret and Dufour effects in a
square cavity filled with non-Newtonian power-law fluid has been simulated by finite differ-
ence Lattice Boltzmann method while entropy generations through fluid friction, heat transfer,
and mass transfer were analyzed by Kefayati [28].

Based the above study, it can be said that, the Dufour and Soret effects on unsteady MHD
free convective heat and mass transfer past an infinite vertical plate entrenched in a porous
medium in the presence of thermal radiation. Hence, the purpose of this paper is to extend
Prasad and Reddy [13] to study the more general problem whichcontains thermal radiation,
Soret and Dufour on unsteady magnetohydrodynamic free convective flow past an infinite verti-
cal plate. The momentum, thermal and solutal boundary layergoverning equations are changed
into a set of partial differential equations and then solvedusing finite element technique. The
effects of a variety of governing parameters on the velocity, temperature, and concentration
profiles including local Nusselt number and local Sherwood number are presented graphically
and the local skin-friction coefficient in tabular form.

2. MATHEMATICAL FORMULATION

Unsteady flow of a radiating, incompressible, viscous fluid flow past an infinite vertical plate
entrenched in porous medium with time-dependent suction inan optically thin environment in
presence of viscous dissipation is considered. The physical representation and the coordinate
system is shown in Fig. 1. For this investigation, the following assumptions are made:

(1) Thex′-axis is taken beside the vertical infinite plate embedded inporous medium in
the upward direction and they′-axis normal to the plate.

(2) At time t′ = 0, the plate is preserved at a temperatureT ′

w, which is high enough to
instigate radiative heat transfer.

(3) A stable magnetic fieldH
′2
o is sustained in they′-direction and the plate moves homo-

geneously along the positivex′-direction with velocityU0.
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FIGURE 1. The physical representation and coordinate system of theproblem.

(4) The fluid is supposed to be a slight conducting and hence the magnetic Reynolds num-
ber is lesser than unity and the induced magnetic field is small in comparison with the
transverse magnetic field.

(5) It is further supposed that there is no applied voltage, as the electric field is absent.

Boussinesq’s approximation the flow is reserved under the above assumptions by the following
equations (Prasad and Reddy [13]):

Equation of continuity
∂w′

∂y′
= 0 (2.1)

Momentum equation
[

∂u′

∂t′

]

+ w′

[

∂u′

∂y′

]

= ν

[

∂2u′

∂y′2

]

−
[

µ2eσCH
′2
0

ρ

]

(

u′ − U ′
)

−
[ ν

K ′

]

(

u′ − U ′
)

+ gβ
(

T ′ − T ′

∞

)

+ gβ∗
(

C ′ − C ′

∞

)

+
∂U ′

∂t′
(2.2)

Energy equation
[

∂T ′

∂t′

]

+w′

[

∂T ′

∂y′

]

=
κ

ρcP

[

∂2T ′

∂y′2

]

− 1

ρcP

[

∂q′

∂y′

]

+
ν

cP

[

(

∂u′

∂y′

)2
]

+
DmkT

cScP

[

∂2C ′

∂y′2

]

(2.3)

Equation of radiative heat flux

∂2q′

∂y′2
− 3α2q′ − 16α σ∗ T

′3
∞

∂T ′

∂y′
= 0 (2.4)

Species diffusion equation
[

∂C ′

∂t′

]

+w′

[

∂C ′

∂y′

]

= D

[

∂2C ′

∂y′2

]

+
DmkT

Tm

[

∂2T ′

∂y′2

]

(2.5)
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The corresponding boundary conditions are

t′ ≤ 0 : u′ = 0, T
′ = T ′

∞
, C ′ = C ′

∞
for all y′

t′ > 0 :

{

u′ = 0, T
′ = T ′

w, C
′ = C ′

w at y′ = 0

u′ = U ′(t′) = w′

0

(

1 + ε eiω
′t′
)

, T ′ → T ′

∞
, C ′ → C ′

∞
asy′ → ∞















(2.6)

Since the fluid is optically thin with a moderately low density andα (absorption coefficient)
<< 1, the radiative heat flux given by equation (2.4) in the strength of Cogley et al. [29]
becomes

∂q′

∂y′
= 4α2

(

T ′ − T ′

∞

)

(2.7)

whereα2 =

∫

∞

0
Kλw

(

∂B

∂T ′

)

dλ.

Further, from Eq. (2.1) it is clear thatw′ is a constant or a function of time only and so we
assume

w′ = −w′

0

(

1 + εAeω
′t′
)

(2.8)

Such thatεA ≪ 1, and the negative sign designates that the suction velocity is towards
the plate. In order to write the governing equations and the boundary conditions in non-
dimensional form, the following non-dimensional quantities are introduced:

y =
w′

0y
′

ν
, ω =

4νω′

w
′2
0

, t =
w

′2
0 t

′

4ν
, u =

u′

U0
, U =

U ′

U0
, θ =

T ′ − T ′

∞

T ′

w − T ′

∞

,

Pr =
ρνcp

κ
, Gr =

gβν (T ′

w − T ′

∞
)

U0w
′2
0

, Gc =
gβ∗ν (C ′

w − C ′

∞
)

U0w
′2
0

, R2 =
ν4α2

ρcPw
′2
0

,

M2 =
νµ2eσCH

′2
0

ρw
′2
0

, χ2 =
ν2

K ′w
′2
0

, Sr =
DmkT (T ′

w − T ′

∞
)

νTm (C ′

w − C ′

∞
)
,

Sc =
ν

D
, Ec =

U2
o

cP (T ′

w − T ′

∞
)
, Du =

DmkT (C ′

w − C ′

∞
)

νcScP (T ′

w − T ′

∞
)
, ϕ =

C ′ − C ′

∞

C ′

w − C ′

∞



















































(2.9)

In view of Eqs. (2.7), (2.8) and (2.9), Eqs. (2.2), (2.3) and (2.5) reduce to the following
non-dimensional form

Momentum equation

1

4

∂u

∂t
−
(

1 + εA eωt
) ∂u

∂y
=

1

4

∂U

∂t
+
∂2u

∂y2
− (M2 + χ2)(u− U) +Grθ +Gcϕ (2.10)

Energy equation

1

4

∂θ

∂t
−
(

1 + εA eωt
) ∂θ

∂y
=

1

Pr

(

∂2θ

∂y2
−R2

)

+ (Du)

(

∂2ϕ

∂y2

)

+ (Ec)

(

∂u

∂y

)2

(2.11)

Species diffusion equation

1

4

∂ϕ

∂t
−

(

1 + εA eωt
) ∂ϕ

∂y
=

1

Sc

∂2ϕ

∂y2
+ (Sr)

(

∂2θ

∂y2

)

(2.12)
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Equations (2.10), (2.11) and (2.12) are now subject to the boundary conditions

t ≤ 0 : u = 0, θ = 0, ϕ = 0 for all y

t > 0 :

{

u = 0, θ = 1, ϕ = 1 on y = 0
u→ 1 + εeωt, θ → 0, ϕ→ 0 asy → ∞







(2.13)

The mathematical statement of the problem is now complete and embodies the solution of
Eqs. (2.10), (2.11) and (2.12) focus to boundary conditions(2.13). The skin-friction, Nusselt
number and Sherwood number are important material parameters for this type of boundary
layer flow. The skin-friction at the plate, which in the non-dimensional form is given by

Cf =
τ ′w
ρUoν

=

(

∂u

∂y

)

y=0

(2.14)

The rate of heat transfer coefficient, which in the non-dimensional form in terms of the Nusselt
number is given by

Nu = −x

(

∂T ′

∂y′

)

y′=0

T ′

w − T ′

∞

⇒ NuRe−1
x = −

(

∂θ

∂y

)

y=0

(2.15)

The rate of mass transfer coefficient, which in the non-dimensional form in terms of the Sher-
wood number, is given by

Sh = −x

(

∂C′

∂y′

)

y′=0

C ′

w −C ′

∞

⇒ ShRe−1
x = −

(

∂ϕ

∂y

)

y=0

(2.16)

whereRex = Uox/ν is the local Reynolds number.

3. NUMERICAL SOLUTION BY FINITE ELEMENT TECHNIQUE & STUDY OF GRID

INDEPENDENCE

3.1. Finite Element Technique. The finite element procedure (FEM) is a numerical and com-
puter based method of solving a collection of practical engineering problems that happen in
different fields such as, in heat transfer, fluid mechanics [30], chemical processing [31], rigid
body dynamics [32], solid mechanics [33], and many other fields. It is recognized by devel-
opers and consumers as one of the most influential numerical analysis tools ever devised to
analyze complex problems of engineering. The superiority of the method, its accuracy, sim-
plicity, and computability all make it a widely used apparatus in the engineering modeling and
design process. It has been applied to a number of substantial mathematical models, whose dif-
ferential equations are solved by converting them into a matrix equation. The primary feature
of FEM ([34] and [35]) is its ability to describe the geometryor the media of the problem being
analyzed with huge flexibility. This is because the discretization of the region of the problem is
performed using highly flexible uniform or non uniform pieces or elements that can easily de-
scribe complex shapes. The method essentially consists in assuming the piecewise continuous
function for the results and getting the parameters of the functions in a manner that reduces the
fault in the solution. The steps occupied in the finite element analysis areas follows.
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Step 1: Discretization of the Domain: The fundamental concept of the FEM is to divide
the region of the problem into small connected pieces, called finite elements. The group of
elements is called the finite element mesh. These finite elements are associated in a non over-
lapping manner, such that they completely cover the entire space of the problem.

Step 2: Invention of the Element Equations:
(1) A representative element is secluded from the mesh and the variational formulation of

the given problem is created over the typical element.
(2) Over an element, an approximate solution of the variational problem is invented, and

by surrogating this in the system, the element equations aregenerated.
(3) The element matrix, which is also known as stiffness matrix, is erected by using the

element interpolation functions.

Step 3: Assembly of the Element Equations: The algebraic equations so achieved are
assembled by imposing the inter element continuity conditions. This yields a large number of
mathematical equations known as the global finite element model, which governs the whole
domain.

Step 4: Imposition of the Boundary Conditions: On the accumulated equations, the
Dirichlet and Neumann boundary conditions (2.13) are imposed.

Step 5: Solution of Assembled Equations: The assembled equations so obtained can be
solved by any of the numerical methods, namely, Gauss elimination technique, LU decompo-
sition technique, and the final matrix equation can be solvedby iterative technique. For com-
putational purposes, the coordinatey is varied from0 to ymax = 10, whereymax represents
infinity i.e., external to the momentum, energy and concentration edge layers.

3.2. Variational formulation. The variational formulation connected with Eqs. (2.10)-(2.12)
over a typical two-nodded linear element(ye, ye+1) is given by

∫ ye+1

ye

w1

[

∂u

∂t
−B

∂u

∂y
− ∂U

∂t
− 4

∂2u

∂y2
− 4(Gr)θ − 4(Gc)ϕ −N (U − u)

]

dy = 0 (3.1)

∫ ye+1

ye

w2

[

∂θ

∂t
−B

∂θ

∂y
− 4

Pr

∂2θ

∂y2
+

4

Pr
R2 − 4Du

∂2ϕ

∂y2
− 4Ec

∂u

∂y

2]

dy = 0 (3.2)

∫ ye+1

ye

w3

[

∂ϕ

∂t
−B

∂ϕ

∂y
− 4

Sc

∂2ϕ

∂y2
− 4Sr

∂2θ

∂y2

]

dy = 0 (3.3)

whereB = 4
(

1 + εAent
)

, N = 4
(

M2 + χ2
)

andw1, w2, w3 are arbitrary test functions
and may be viewed as the variation inu, θ andϕ respectively. After dropping the order of
integration and non-linearity, we appear at the following system of equations.

∫ ye+1

ye

[

(w1)
(

∂u
∂t

)

−B (w1)
(

∂u
∂y

)

+ 4
(

∂w1

∂y

)(

∂u
∂y

)

+N (w1) u− 4 (Gr) (w1) θ

−4 (Gc) (w1)ϕ−N (w1)U − ∂U
∂t

(w1)

]

dy

−
[

4 (w1)

(

∂u

∂y

)]ye+1

ye

= 0 (3.4)
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∫ ye+1

ye





(w2)
(

∂θ
∂t

)

−B (w2)
(

∂θ
∂y

)

+ 4
Pr

(

∂w2

∂y

)(

∂θ
∂y

)

+ 4
Pr (w2)R

2

−4 (Du) (w2)
(

∂w2

∂y

)(

∂ϕ
∂y

)

− 4 (Ec) (w2)
(

∂ū
∂y

)(

∂u
∂y

)



dy

−
[

4
(w2

Pr

)

(

∂θ

∂y

)

− 4 (Du) (w2)

(

∂ϕ

∂y

)]ye+1

ye

= 0 (3.5)

∫ ye+1

ye

[

(w3)

(

∂ϕ

∂t

)

−B (w3)

(

∂ϕ

∂y

)

+
4

Sc

(

∂w3

∂y

)(

∂ϕ

∂y

)

− 4 (Sr)

(

∂w3

∂y

)(

∂ϕ

∂y

)]

dy

−
[

4
(w3

Sc

)

(

∂ϕ

∂y

)

− 4 (Sr) (w3)

(

∂ϕ

∂y

)]ye+1

ye

= 0 (3.6)

3.3. Finite Element formulation. The finite element model may be obtained from Eqs. (3.4)-
(3.6) by replacing finite element approximations of the form:

u =

2
∑

j=1

uejψ
e
j , θ =

2
∑

j=1

θejψ
e
j , ϕ =

2
∑

j=1

ϕe
jψ

e
j (3.7)

with w1 = w2 = w3 = ψe
j (i = 1, 2), whereuej , θ

e
j andϕe

j are the velocity, temperature
and concentration respectively at thejth node of typicaleth element(ye, ye+1) andψe

i are the
shape functions for this element(ye, ye+1) and are taken as:

ψe
1 =

ye+1 − y

ye+1 − ye
andψe

2 =
y − ye

ye+1 − ye
, ye ≤ y ≤ ye+1 (3.8)

The finite element model of the equations foreth element thus formed is given by




[K11] [K12] [K13]
[K21] [K22] [K23]
[K31] [K32] [K33]









{ue}
{θe}
{ϕe}



+





[M11] [M12] [M13]
[M21] [M22] [M23]
[M31] [M32] [M33]









{u′e}
{θ′e}
{ϕ′e}



 =





{b1e}
{b2e}
{b3e}





(3.9)
where{[Kmn] , [Mmn]} and{{ue} , {θe} , {ϕe} , {u′e} , {θ′e} , {ϕ′e} and{bme} } (m, n
= 1, 2, 3) are the set of matrices of order2 × 2 and2 × 1 respectively. These matrices are
defined as follows

M11
ij =

∫ ye+1

ye

(ψe
i )

(

ψe
j

)

dy, M12
ij =M13

ij = 0,

K11
ij = −B

∫ ye+1

ye

[

(ψe
i )

(

∂ψe
j

∂y

)]

dy + 4

∫ ye+1

ye

[(

∂ψe
i

∂y

)(

∂ψe
j

∂y

)]

dy,

K12
ij = N

∫ ye+1

ye

[

(ψe
i )

(

ψe
j

)]

dy −
[

N (U) +

(

∂U

∂t

)]
∫ ye+1

ye

[ψe
i ]dy,

K13
ij = −4 [Gr +Gc]

∫ ye+1

ye

(ψe
i )

(

ψe
j

)

dy, K21
ij = −4 (Ec)

∫ ye+1

ye

[

(ψe
i )

(

∂ū

∂y

)(

∂ψe
j

∂y

)]

dy,
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K22
ij = −B

∫ ye+1

ye

[

(ψe
i )

(

∂ψe
j

∂y

)]

dy +
4

Pr

∫ ye+1

ye

[(

∂ψe
i

∂y

)(

∂ψe
j

∂y

)]

dy,

K23
ij =

4

Pr
R2

∫ ye+1

ye

[ψe
i ]dy −Du

∫ ye+1

ye

(

∂ψe
i

∂y

)(

∂ψe
j

∂y

)

dy, M21
ij =M23

ij = 0,

M22
ij =

∫ ye+1

ye

(ψe
i )

(

ψe
j

)

dy, M31
ij =M32

ij = 0, M33
ij =

∫ ye+1

ye

(ψe
i )

(

ψe
j

)

dy,

K31
ij = 0, K32

ij = −4 (Sr)

∫ ye+1

ye

(

∂ψe
i

∂y

)(

∂ψe
j

∂y

)

dy,

K33
ij = −B

∫ ye+1

ye

[

(ψe
i )

(

∂ψe
j

∂y

)]

dy +
4

Sc

∫ ye+1

ye

[(

∂ψe
i

∂y

)(

∂ψe
j

∂y

)]

dy,

b1ei = 4

[

(ψe
i )

(

∂ψe
j

∂y

)]ye+1

ye

, b2ei =

[

4

(

ψe
i

Pr

)(

∂ψe
j

∂y

)

− 4 (Du) (ψe
i )

(

∂ψe
j

∂y

)]ye+1

ye

,

b3ei =

[

4

(

ψe
i

Sc

)(

∂ψe
j

∂y

)

− 4 (Sr) (ψe
i )

(

∂ψe
j

∂y

)]ye+1

ye

In one-dimensional space, linear and quadratic elements, or element of higher order can
be taken. The entire flow province is divided into 11000 quadratic elements of equal size.
Each element is three-noded, and therefore the whole domaincontains 21001 nodes. At each
node, four functions are to be evaluated; hence, after assembly of the element equations, we
acquire a system of 81004 equations which are nonlinear. Therefore, an iterative scheme must
be developed in the solution. After striking the boundary conditions, a system of equations
has been obtained which is solved mathematically by the Gauss elimination method while
maintaining a correctness of 0.00001. A convergence criterion based on the relative difference
between the present and preceding iterations is employed. When these differences satisfy the
desired correctness, the solution is assumed to have been congregated and iterative process is
terminated. The Gaussian quadrature is applied for solvingthe integrations. The computer
cryptogram of the algorithm has been performed in MATLAB running on a PC. Excellent
convergence was completed for all the results.

3.4. Study of Grid Independence. In general, to study the grid independency/dependency,
how should the mesh size be varied in order to check the solution at different mesh (grid) sizes
and get a range at which there is no variation in the solutions. We showed the numerical values
of velocity (u), temperature (θ) and concentration (ϕ) for different values of mesh (grid) size
at timet = 1.0 in the following table 1.

From this table 1, we observed that there is no variation in the values of velocity (u), temper-
ature (θ) and concentration (ϕ) for different values of mesh (grid) size at timet = 1.0. Hence,
we conclude that, the results are independent of mesh (grid)size.
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TABLE 1. The numerical values ofu, θ andφ for variation of mesh sizes att = 1.0

Mesh (Grid) size= 0.01 Mesh (Grid) size= 0.001
u θ ϕ u θ ϕ

0.000000 1.000000 1.000000 0.000000 1.000000 1.000000
2.974329 0.369802 0.548479 2.974329 0.369802 0.548479
3.370421 0.169484 0.274438 3.370421 0.169484 0.274438
3.026220 0.081939 0.135010 3.026220 0.081939 0.135010
2.577752 0.040053 0.066201 2.577752 0.040053 0.066201
2.210582 0.019617 0.032440 2.210582 0.019617 0.032440
1.949927 0.009608 0.015892 1.949927 0.009608 0.015892
1.771644 0.004700 0.007776 1.771644 0.004700 0.007776
1.640400 0.002287 0.003788 1.640400 0.002287 0.003788
1.518096 0.001087 0.001806 1.518096 0.001087 0.001806
1.358957 0.000461 0.000777 1.358957 0.000461 0.000777

Mesh (Grid) size= 0.0001 Mesh (Grid) size= 0.00001
u θ ϕ u θ ϕ

0.000000 1.000000 1.000000 0.000000 1.000000 1.000000
2.974329 0.369802 0.548479 2.974329 0.369802 0.548479
3.370421 0.169484 0.274438 3.370421 0.169484 0.274438
3.026220 0.081939 0.135010 3.026220 0.081939 0.135010
2.577752 0.040053 0.066201 2.577752 0.040053 0.066201
2.210582 0.019617 0.032440 2.210582 0.019617 0.032440
1.949927 0.009608 0.015892 1.949927 0.009608 0.015892
1.771644 0.004700 0.007776 1.771644 0.004700 0.007776
1.640400 0.002287 0.003788 1.640400 0.002287 0.003788
1.518096 0.001087 0.001806 1.518096 0.001087 0.001806
1.358957 0.000461 0.000777 1.358957 0.000461 0.000777

4. PROGRAM VALIDATION AND COMPARISON WITH PREVIOUS RESEARCH

In order to check on the correctness of the numerical technique used for the solution of the
problem considered in the present study, it was authenticated by performing simulation for
numerical solutions for the effects of radiation and mass transfer on an unsteady magnetohy-
drodynamic free convective flow past a heated vertical plateembedded in a porous medium in
presence of viscous dissipation which are reported by Prasad and Reddy [13]. Tables 2, 3, 4
and 5 show the calculated values for skin-friction, Rate of heat and mass transfer coefficients
for the present solution whenSr = Du = 0, and the results in published by Prasad and Reddy
[13]. Tables 2, 3, 4 and 5 show a very good concurrence betweenthe results and this lends
confidence to the present numerical code.



320 R. S. RAJU

TABLE 2. Comparison between present skin-friction(Cf ) and Nusselt num-
ber(Nu Re−1

x ) results with the results(C∗

f , Nu
∗Re−1

x ) of Prasad and Reddy
[13] for different values ofEc.

Ec Cf C∗

f Nu Re−1
x Nu∗ Re−1

x

0.0 1.63024458 1.6302 3.33965172 3.3396
0.001 1.48365516 1.4836 3.09564923 3.0956
0.010 0.16443199 0.1644 0.89964186 0.8996

TABLE 3. Comparison between present skin-friction(Cf ) and Nusselt num-
ber(Nu Re−1

x ) results with the results(C∗

f , Nu
∗Re−1

x ) of Prasad and Reddy
[13] for different values ofR.

R Cf C∗

f Nu Re−1
x Nu∗ Re−1

x

0.0 3.76701694 3.7670 0.67210943 0.6721
0.5 3.47752292 3.4775 1.10649216 1.1064
1.0 3.32915508 3.3291 1.35993044 1.3599
1.5 3.09568774 3.0956 1.48367628 1.4836

TABLE 4. Comparison between present skin-friction(Cf ) and Sherwood
number(Sh Re−1

x ) results with the results(C∗

f , Sh
∗Re−1

x ) of Prasad and
Reddy [13] for different values ofSc.

Sc Cf C∗

f Sh Re−1
x Sh∗ Re−1

x

0.22 3.73162208 3.7316 0.22011848 0.2201
0.60 3.47751182 3.4775 0.60183321 0.6018
0.78 3.39804066 3.3980 0.78044923 0.7804
0.94 3.34001101 3.3400 0.94031584 0.9403

TABLE 5. Comparison between present skin-friction(Cf ) results with the re-
sults(C∗

f ) of Prasad and Reddy [13] for different values ofGr andGc.

Gr Cf C∗

f Gc Cf C∗

f

0 2.52780649 2.5278 0 2.80126472 2.8012
1 3.10972668 3.0197 1 3.47753994 3.4775
2 3.47751623 3.4775 2 4.14845591 4.1484
3 3.88681947 3.8868 3 4.81384067 4.8138
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5. DISCUSSION OF THE RESULTS

In the preceding sections, we have prepared and solved the problem of an unsteady MHD
free convection flow past an infinite heated vertical plate surrounded in a porous medium with
thermal-diffusion, diffusion-thermo, viscous dissipation and radiation. By interesting, the op-
tically thin differential approximation for the radiativeheat flux in the energy equation. In the
numerical calculation, the Prandtl number (Pr = 0.71) which corresponds to air and different
values of the stuff parameters are used. In addition, the boundary conditiony → ∞ is approx-
imated byymax = 10, which is adequately large for the velocity to approach the appropriate
stream velocity. The temperature and the species concentration are coupled to the velocity
through Grashof number for heat and mass transfer as seen in Eq. (2.10). For assorted values
of Grashof number for heat and mass transfer, the velocity profilesu are plotted in Figs. 2 (a)
and 2 (b).

(a) (b)

FIGURE 2. Effect of (a)Gr , (b) Gc on velocity profiles

The Grashof number for heat transfer indicates the relativeeffect of the thermal buoyancy
force to the viscous hydrodynamic force in the boundary layer. As expected, it is observed
that there is a increase in the velocity due to the enhancement of thermal buoyancy force.
Also, asGr raises, the peak values of the velocity increases quickly near the porous plate and
then decomposes smoothly to the free stream velocity. The Grashof number for mass transfer
characterizes the ratio of the buoyancy force to the viscoushydrodynamic force. As usual, the
fluid velocity increases and the peak value is more distinctive due to enhance in the species
buoyancy force. The velocity distribution reaches a distinctive greatest value in the locality of
the plate and then decreases properly to move towards the free stream value. It is perceived
that the velocity magnifies with increasing values of Grashof number for mass transfer.

Fig. 3 (a) demonstrates the velocity profiles for dissimilarvalues of Prandtl numberPr.
The mathematical results show that the effect of growing values of Prandtl number result in
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diminishing velocity. The nature of velocity profiles in presence of distant species such asSc
= 0.22 (Hydrogen), 0.30 (Helium), 0.60 (Oxygen) and 0.78 (Ammonia) are showing in Fig. 3
(b).

(a) (b)

FIGURE 3. Effect of (a)Pr, (b)Sc on velocity profiles

The flow field experiences a decrease in velocity at all pointsin attendance of heavier dif-
fusing species. The results of the magnetic field parameterM is shown in Fig. 4 (a).

(a) (b)

FIGURE 4. Effect of (a)M , (b)χ on velocity profiles

It is noticed that the velocity of the fluid diminishes with the raises of the magnetic field
parameter values. The reduce in the velocity as the HartmannnumberM increases is because
the occurrence of a magnetic field in an electrically conducting fluid initiates a force called
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the Lorentz force, which acts adjacent to the flow when the magnetic field is acted in the
perpendicular direction, as in the present study. This resistive force deliberates down the fluid
velocity component as shown in Fig. 4 (a). Fig. 4 (b) shows theeffects of Darcy numberχ
on the velocity profiles for cooling as well as heating of the plate. For a cooling plate fluid
velocity increases, while for a heating plate it decreases with increase ofχ. Darcy number
is the capacity of the porosity of the medium. With increasing porosity of the medium, the
value ofχ increases. For large porosity of the medium fluid acquires more space to flow as
a consequence its velocity increases. The effect of the thermal radiation parameterR on the
velocity and temperature profiles in the boundary layer are demonstrated in Figs. 5 (a) and 5
(b), respectively.

(a) (b)

FIGURE 5. Effect of (a)R on velocity, (b)R on temperature profiles

With increasing the thermal radiation parameterRconstructs significant boost in the thermal
condition of the fluid and its thermal boundary layer. This increase in the fluid temperature
brings more flow in the boundary layer reasoning the velocityof the fluid there to increase. The
influence of the viscous dissipation (Eckert number) parameter on the velocity and temperature
profiles are shown in Figs. 6 (a) and 6 (b), respectively.

The relationship between the kinetic energy in the flow and the enthalpy is given by Eckert
number. It represents the exchange of kinetic energy into internal energy by work done against
the viscous fluid stresses. Larger viscous dissipative heatcauses a grow in the temperature as
well as the velocity. This performance is evident from Figs.6 (a) and 6 (b). Figs. 7 (a) and
7 (b) describe the velocity and concentration profiles for different values of the Soret (thermal
diffusion) number.
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(a) (b)

FIGURE 6. Effect of (a)Econ velocity (b)Econ temperature profiles

(a) (b)

FIGURE 7. Effect of (a)Sron velocity, (b)Sron concentration profiles

The Soret number classifies the effect of the temperature gradients inducing significant mass
diffusion effects. It is observed that an increase in the Soret number results in an increase in
the velocity and concentration within the boundary layer. For different values of the Dufour
(diffusion thermo) number, the velocity and temperature profiles are designed in Figs. 8 (a)
and 8 (b), respectively.

The Dufour number signifies the contribution of the concentration gradients to the thermal
energy flux in the flow. It is institutes that an increase in theDufour number causes a rise in the
velocity and temperature all over the boundary layer. For, the temperature profiles decompose
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(a) (b)

FIGURE 8. Effect of (a)Du on velocity, (b)Du on temperature profiles

smoothly from the plate to the free stream value. However for, a distinct velocity overshoot
exists near the plate, and thereafter the profile falls to zero at the edge of the boundary layer.

(a) (b)

FIGURE 9. Effects of (a)Pr on temperature, (b)Sc on concentration profiles

Fig. 9 (a) illustrate the temperature profiles for dissimilar values of Prandtl number Pr. It is
scrutinized that the temperature decrease as an increasingthe Prandtl number. The reason is
that smaller values of Pr are equivalent to amplify in the thermal conductivity of the fluid and
then heat is able to diffuse away from the heated surface morequickly for higher values of Pr.
Hence in the case of lesser Prandtl number the thermal boundary layer is substantial and the
rate of heat transfer is reduced. Fig. 9 (b) shows the concentration field due to dissimilarities
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in Schmidt number for the gasses Hydrogen, Helium, Oxygen and Ammonia. It is observed
that concentration field is progressively for Hydrogen and drops rapidly for Oxygen and Am-
monia in assessment to water-vapour. Thus Hydrogen can be used for preserving effective
concentration field and water-vapour can be used for sustaining normal concentration field.

5.1. Local skin-friction (Cf ). The numerical values of local skin-friction are presented in
table 6 for dissimilar values of Magnetic field (Hartmann number), Porosity parameter (Darcy
number), Soret and Dufour numbers. It is observed from this table that

• The skin-friction increases from 2.95431478 to 3.26981158with decreasing the value
of M from 4.0 to 2.0, while reverse effect is found forχ (skin-friction decreases from
3.01140566 to 2.88523694 with increasing the value ofχ from 2.0 to 3.0).

• The skin-friction increases asSr increases from 1.0 to 2.0; thereafter however it in-
creases with a succeeding value ofSr to 3.0 through to the least value of 1.0.

• Dufour number (Du) has towering impact on skin-friction. The skin-friction enhances
from 3.26981158 to 3.46317524 with increasing the value ofDu from 1.0 to 3.0.

TABLE 6. Variation of numerical values of skin-friction (Cf ) for different
values ofM , Sr, Du andχ

M χ Sr Du Cf

2.0 1.0 1.0 1.0 3.26981158
4.0 2.95431478
6.0 2.61228304

2.0 3.01140566
3.0 2.88523694

2.0 3.36951587
3.0 3.45902413

2.0 3.37683951
3.0 3.46317524

5.2. Local rate of heat transfer (Nu Re−1
x ). The graphical results of local rate of heat trans-

fer are presented in Figs. 10 (a), 10 (b) and 11 (a) for disparate values of Eckert number, Dufour
number and thermal radiation parameter, respectively. It is observed from these figures that

• An increase in Dufour number gradually increases the magnitude of Nusselt number.
• The effectiveness of the thermal radiation parameter has lean impact on rate of heat

transfer. i.e. the Nusselt number diminishes when increasing the thermal radiation
parameter.

• Rate of heat transfer enhances with increasing of viscous dissipation (Eckert number)
parameter.
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(a) (b)

FIGURE 10. Effects of (a)Ec , (b) Du on rate of heat transfer

5.3. Local rate of mass transfer (Sh Re−1
x ). The results of local rate of mass transfer are

presented in Fig. 11 (b) for changed values of Soret number. It is observed from this table that
the effect of Soret number is seen more prominently for rate of mass transfer i.e., there is sharp
increase in the value of rate of mass transfer.

(a) (b)

FIGURE 11. Effect of (a)R, (b)Sr on rate of mass transfer

The comparison of rate of heat and mass transfer coefficientsfor different values of Eckert
number (Ec) are shown in the Fig. 12.

From this figure, we noticed that the curves for rate of heat and mass transfer coefficients
are close to each other. This means that, the numerical values of these coefficients are almost
concur each other.
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FIGURE 12. Comparison of rate of heat and mass transfer coefficientsfor
different values ofEc

6. SUMMARY AND CONCLUSIONS

In the current study, the flow of an unsteady magnetohydrodynamic free convection past an
infinite vertical plate in a porous medium under the synchronized effects of thermal-diffusion,
diffusion-thermo, viscous dissipation and radiation is exaggerated by the stuff parameters. The
governing equations are estimated to a system of linear partial differential equations by using
finite element method. The results are opened graphically and we can conclude that the flow
field and the quantities of physical awareness are significantly influenced by these parameters.

(1) Larger viscous dissipative heat causes an increase in the temperature plus the velocity
profiles.

(2) As thermal radiation parameter increases, then there isa rise in both velocity and tem-
perature profiles.

(3) The numerical results designate that the velocity increases with the increase in Grashof
number for heat transfer and mass transfer, Darcy parameter, while it decreases as the
magnetic field parameter, Prandtl number and Schmidt numberincreases.

(4) Dufour effects deeply influence the temperature profilesin the thermal boundary layer
i.e. temperature profiles increases with the increase in theDufour number.

(5) Soret effects are to enhance the concentration distribution with formation of concentra-
tion peak for superior values of Soret parameter in the concentration boundary layer.

(6) The numerical results obtained and compared with formerly reported cases available
in the open literature and they are found to be in very good concurrence.

The analysis has shown that the temperature and concentration fields are appreciably predis-
posed by the Dufour and Soret effects. Thus we conclude that for some kind of mixture (i.e.,
H2, Air) with the light molecular weight, the Soret and Dufour effects play an important role
and should be considered in future studies.



329

NOMENCLATURE

x′ Coordinate axis along the plate (m) x Dimensionless Coordinate
Sh Sherwood number axis along the plate (m)
y′ Coordinate axis normal to the plate (m) y Dimensionless Coordinate
B Planck’s function axis normal to the plate (m)
t′ Dimensional time (s) t Dimensionless time (s)
u′ Velocity component inx′-direct. (ms−1) u Dimensionless Velocity (ms−1)
w′ Velocity component iny′-direct. (ms−1) H ′

0 Transverse magnetic field (tesla)
g Acceleration due to gravity (ms−2) Sc Schmidt number
T ′ Fluid temperature (◦C) T ′

w Fluid temperature at the wall (◦C)
T ′

∞
Fluid temperature at free stream (◦C) C ′ Fluid Concentration (Kgm−3)

C ′

w Concentration at the wall (Kg m−3) Du Dufour number
cP Specific heat at constant pressure D Solute mass diffusivity (m2s−1)
P Pressure (Nm−2) Sr Soret number
Uo Dimensionless plate velocity (ms−1) U Free stream velocity (ms−1)
w′

o Dimensional suction velocity (ms−1) Dm Molecular diffusivity (m2s−1)
cS Concentration susceptibility (mmole−1) q′ Radiative heat flux (Wm−2)
M Hartmann number Pr Prandtl number
Gr Grashof number for heat transfer Gc Grashof number for mass transfer
K ′ Dimensional porosity parameter (m2) O Origin
C ′

∞
Concentration at free stream (Kgm−3) Ec Eckert number

R Thermal Radiation parameter kT Mean absorption coefficient
Cf Skin-friction Coefficient (Nm−2) Tm Mean fluid temperature
U ′ Dimensional free stream velocity (ms−1) A Small positive parameter
Nu Rate of heat transfer (or) Nusselt number Kλw Mean Absorption coefficient
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GREEK SYMBOLS

β Coefficient of thermal expansion (K−1) ρ Fluid density (Kgm−3)
ε Small positive parameter v Kinematic viscosity (m2s−1)
τ ′w Shear stress (Nm−2) θ Dimensionless temperature (◦C)
ϕ Dimensionless concentration (Kgm−3) ω′ Free stream frequency of oscillation
χ Darcy number (Kd−2) µe Magnetic Permeability (Hm−1)
δ Radiation absorption coefficient (cm3s−1) σ∗ Stefan-Boltzmann constant
κ Thermal conductivity (Wm−1K−1) ω Dimensionless free stream
σC Electrical conductivity (Sm−1) frequency of oscillation (s−1)
β∗ Coefficient of Compositional expansion

Superscript
′ Differentiation w.r.t. toy

Subscripts
w Wall condition ∞ Free stream condition
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