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ABSTRACT. Finite element method has been applied to solve the fundi@irgoverning equa-
tions of natural convective, electrically conducting, angoressible fluid flow past an infinite
vertical plate surrounded by porous medium in presenceesfithl radiation, viscous dissipa-
tion, Soret and Dufour effects. In this research work, ttseilts of coupled partial differential
equations are found numerically by applying finite elemenhnique. The sway of significant
parameters such as Soret number, Dufour number, Grashdferfor heat and mass transfer,
Magnetic field parameter, Thermal radiation parametemnmBability parameter on velocity,
temperature and concentration evaluations in the bourldgey region are examined in detail
and the results are shown in graphically. Furthermore, fieeteof these parameters on local
skin friction coefficient, local Nusselt number and Sherdi@ambers is also investigated. A
very good agreement is noticed between the present resultpravious published works in
some limiting cases.

1. INTRODUCTION

1.1. Literature Review of Natural Convection. Natural convection flow encouraged by ther-
mal and solutal buoyancy forces acting over bodies wittediffit geometries in a fluid soaked
porous medium is prevalent in many natural phenomena anddsasted and wide range of
industrial applications. For example, in atmospheric flalve occurrence of water or pure air
is impossible because some foreign mass may be presentlegielly or mixed with air or
water due to industrial productions. Natural processel sgcvaporization of mist and fog,
photosynthesis, drying of porous solids, reduction ofd¢exaste in water bodies, transpiration,
sea-wind pattern (where upward convection is modified byidlisrforces) and formation of
ocean currents [1] happens due to thermal and solutal bogyarces urbanized as a result of
difference in concentration or temperature or a combinatibthese two. Such configuration
is also encountered in several practical systems for ingdyéaced applications viz. cooling
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of molten metals, insulation systems, petroleum resesybieat exchanger devices, chemical
catalytic reactors, filtration and processes, nuclearevasiositories, desert coolers, frost for-
mation in vertical channels, wet bulb thermometers etc. Aenical study was Garoosi et al.
[2] carried out concerning natural and mixed convectiont lweansfer of nanofluid in a two-
dimensional square cavity with numerous pairs of heat sosirtks. In this research, authors
solved two-dimensional Navier—Stokes, energy and voluaaibn equations by applying the
finite volume method. Garoosi et al. [3] studied heat transé&ural convection of nanofluid
in a two-dimensional square cavity containing numerousspafi heater and coolers (HACSs)
using finite volume discretization method. Free convedigat and mass transfer in a steady
two-dimensional magnetohydrodynamic fluid flow over a shigtg vertical surface embedded
in porous medium was studied by Rashidi et al. [4] using hompanalysis method. The ef-
fect of non-uniform magnetic field on nanofluid forced coriat heat transfer in a lid driven
semi-annulus was discussed by Sheikholeslami et al. [Sihitnpaper, authors used control
volume based finite element method to solve the governingtams in the form of stream
function-vorticity formulation for the thermophoresiscaBrownian motion effects are taken
into account. Rashidi et al. [6] studied the effect of maigniétld on natural convection sur-
face boundary condition over a flat plate applying the onawmpater group method. Rashidi
et al. [7] discussed the natural convection flow of an incaagible third grade fluid between
two parallel plates. In this paper, the governing equatifhe flow were reduced to a set
of nonlinear ordinary differential equations and the rééisgl nonlinear ordinary differential
equations were solved by multi-step differential transfanethod. Heat transfer by simulta-
neous natural convection and radiation through an opfi¢hitk fluid over a heated vertical
plate have been studied by Kang Cao and John Baker [8] withdfider momentum and ther-
mal non-continuum boundary conditions. The influences olexmb auxiliary plate positions
along the centerline of a vertical channel on combined aattonvective in air and radiative
heat transfer were investigated by Andreozzi and Man [9]esaahya et al. [10] investigated
the free convective magneto hydrodynamic fluid flow througthannel with time periodic
boundary condition with the effect of Joule dissipation.

1.2. Literature Review of Viscous Dissipation. The impact of viscous dissipation acting an
important role in natural convective flows in various desiaghich are focused to large deceler-
ation or which activate at high rotational speeds and alstrang gravitational field processes
on large planets, geological processes and in nuclear@swiig in association with the cooling
of reactors. Fluid flow of natural convection is often endewued in cooling of nuclear reactors
or in the study of the structure of stars and planets (SrsaivRaju [11]). Great importance of
temperature and heat transfer study has great importarice &mgineers because of its almost
universal happening in many branches of science and emigigedt is also essential to study
the heat transfer from an asymmetrical surface becauspiiaresurfaces are often nearby in
many functions, such as radiator, heat exchangers andrarstdr enhancement devices. Siva-
iah and Srinivasa Raju [11] studied the effect of Hall cur@mheat and mass transfer viscous
dissipative fluid flow with heat source using finite elementhiod. Ganga et al. [12] was inves-
tigated the effects of viscous and Ohmic dissipation ordste@athematically two-dimensional
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radiative boundary-layer flow of a incompressible and eiesity conducting nanofluid over a
vertical plate internal heat generation/absorption. Asteady, two-dimensional, hydromag-
netic, laminar free convective boundary-layer flow of artleally conducting, newtonian, in-
compressible and radiating fluid past an infinite heatedoaporous plate with heat and mass
transfer was analyzed by Ramachandra Prasad and Bhasldy R8tltaking into account the
impact of viscous dissipation. The effect of radiation on#shmensional free convective MHD
flow of incompressible fluid occupied in a porous medium betwivo vertical wavy walls in
presence of temperature dependent heat source was iatedtlyy Dada and Disu [14]. In this
research paper authors was assumed the flow consists of goar¢@md a perturbed part. The
resultant differential equations were solved by Differariransform Method (DTM). The free
convection heat with mass transfer for MHD non-Newtonianitigy*Powell flow embedded in
a porous medium, over an infinite vertical plate was studieBldabe [15] taking into account
the effects of both viscous dissipation and heat sourcerddatar fluid behaviour on steady
MHD mass transfer with free convection through a porous omadivith constant heat and
mass fluxes have been studied numerically by Haque et al. PEdjand Talukdar [17] studied
the effect of thermal radiation on an unsteady hydromagrstivective heat and mass trans-
fer for a viscous fluid past a semi-infinite vertical movingel embedded in a porous media
in the attendance of heat absorption and first-order chémgeation of the species by using
Perturbation technique. MHD boundary layer flow and heatsfier of a fluid with variable
viscosity through a porous medium towards a stretchingtdheéaking in to the effects of
viscous dissipation in presence of heat source/sink wasisked by Dessie and Kishan [18].
Raju et al. [19] dealt with a steady MHD forced convective flofra viscous fluid of finite
depth in a saturated porous medium over a fixed horizontairetawvith thermally insulated
and impermeable bottom wall in the presence of viscouspiiisn and joule heating. Reddy
[20] studied the effects of thermal radiation, viscous igesson, and Hall current effects on
the hydromagnetic convection flow of an electrically cortohg; viscous, incompressible fluid
past over a stretching vertical flat plate.

1.3. Literature Review of Soret and Dufour Effects. When heat and mass transfer arise con-
currently in a moving fluid, the relations between the fluxed the motivating potentials are
of a more come together nature. Hence an energy flux can beedneat only by concentra-
tion gradients but also by temperature gradients. The grferg caused by a concentration
gradient is named the diffusion thermo (Dufour) effect. @a éxtra hand, mass fluxes can
also be produced by temperature gradients and this sigtfieethermal diffusion (Soret) ef-
fect. In the majority of the studies connected to heat andsrtrasisfer processes, the effects
of Soret and Dufour are disregarded on the basis that thegfardesser order of magnitude
than the effects showed by Fourier's and Fick's laws. TheSeffect, for example, has been
employed for isotope separation and in mixture connectiageg with very light molecular
weight (Hydrogen or Helium) and of medium molecular weidlitogen or Air). The Dufour
effect was established to be of order of extensively madarituch that it cannot be unnoticed
(Eckeret and Drake [21]). Rashidi et al. [22] investigated tombined effects viscous dis-
sipation and Ohmic heating on steady MHD convective andfllig due to a rotating disk
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in presence of thermal diffusion and diffusion thermo via MIASheri and Raju [23] stud-
ied the influence of Soret on an unsteady magnetohydrodysaimde convective flow past a
semi-infinite vertical plate in the presence viscous dasym. The results of thermal radiation
and heat source on an unsteady MHD free convective fluid fleev am infinite vertical plate
in occurrence of thermal-diffusion and diffusion-thermeres discussed by Raju et al. [24].
Rashidi and Erfani [25] studied the effects of thermalwdifobn and diffusion-thermo on com-
bined heat and mass transfer of a steady magnetohydrodyramvective and slip flow due
to a rotating disk with viscous dissipation and Ohmic hegtithe homotopy analysis method
with two auxiliary parameters was employed by Rashidi ef28] to examined the effects of
Soret and Dufour on a steady two-dimensional magnetohydandic viscoelastic fluid flow
over a stretching vertical surface in presence of heat arsd tnansfer. The effects of Soret and
Dufour effects with heat and mass transfer on the steadyn&rmixed convection flow along
a semi-infinite vertical plate surrounded in a micropolaidfinowed under non-Darcy porous
medium in presence of heat and mass flux conditions weretigatsd by Srinivasacharya
and RamReddy [27]. Double-diffusive natural convectiothwBoret and Dufour effects in a
square cavity filled with non-Newtonian power-law fluid haehb simulated by finite differ-
ence Lattice Boltzmann method while entropy generatiorsutyh fluid friction, heat transfer,
and mass transfer were analyzed by Kefayati [28].

Based the above study, it can be said that, the Dufour and &ifeets on unsteady MHD
free convective heat and mass transfer past an infinitecakipiate entrenched in a porous
medium in the presence of thermal radiation. Hence, thegserpf this paper is to extend
Prasad and Reddy [13] to study the more general problem vduotains thermal radiation,
Soret and Dufour on unsteady magnetohydrodynamic freesctise flow past an infinite verti-
cal plate. The momentum, thermal and solutal boundary lggeerning equations are changed
into a set of partial differential equations and then solusihg finite element technique. The
effects of a variety of governing parameters on the velptgyperature, and concentration
profiles including local Nusselt number and local Sherwoochber are presented graphically
and the local skin-friction coefficient in tabular form.

2. MATHEMATICAL FORMULATION

Unsteady flow of a radiating, incompressible, viscous fladifpast an infinite vertical plate
entrenched in porous medium with time-dependent sucti@miaptically thin environment in
presence of viscous dissipation is considered. The pHyspeesentation and the coordinate
system is shown in Fig. 1. For this investigation, the follogvassumptions are made:

(1) Thea'-axis is taken beside the vertical infinite plate embeddegoimus medium in
the upward direction and thg-axis normal to the plate.

(2) Attimet¢ = 0, the plate is preserved at a temperatifg which is high enough to
instigate radiative heat transfer.

(3) A stable magnetic fieIdH;2 is sustained in thg’-direction and the plate moves homo-
geneously along the positivé-direction with velocityUy.
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FIGURE 1. The physical representation and coordinate system qirtiigem.

(4) The fluid is supposed to be a slight conducting and hereedgnetic Reynolds num-
ber is lesser than unity and the induced magnetic field islsmebmparison with the
transverse magnetic field.

(5) ltis further supposed that there is no applied voltageha electric field is absent.
Boussinesq's approximation the flow is reserved under tbeeaassumptions by the following
equations (Prasad and Reddy [13]):

Equation of continuity
ow'
oy’

=0 (2.1)

Momentum equation

WY e [o] [P ecHE
ot ay/ ay/2 p

(W —U") — [%] (v = U")

ou’
+98 (T'=T.) + 98" (C'=CL) + o (2.2)
Energy equation
/ / 21 1 / I\ 2 2V
or ! or _ K 81; 1 8_q+i 8_u +Dka 802 2.3)
ot oy’ pcp | 0y pcp |0y | cp |\ OY csep | Oy
Equation of radiative heat flux
82(]/ 2 * ’SaT/
a9y —3a’q — 16 o* T.2 ay =0 (2.4)

Species diffusion equation

aC’ fac 92C'1 Dy kr [92T
[at’]+w [3y’}_D[3y’2}+ T [aM (25)
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The corresponding boundary conditions are

'<0: o =0T7T=T, C"=C forall ¢
W =0T=1T,C=C,aty =0
t'>0: / 14! / iw't! / / / / / (2.6)
u :U(t):w0<1+se ),T — T, C' = CL asy — o
Since the fluid is optically thin with a moderately low degsiind o (absorption coefficient)
<< 1, the radiative heat flux given by equation (2.4) in the sttergf Cogley et al. [29]
becomes
00 _ o2 (7 — 1 2.7
a_y’ = 2t ( - oo) (2.7)

o 0B
wherea? = Ky | — ) d\.
) /0 ’ (an>
Further, from Eq. (2.1) it is clear that’ is a constant or a function of time only and so we
assume
w = —wy <1 + 5Ae“’/t/> (2.8)

Such that:A <« 1, and the negative sign designates that the suction velczitgwards
the plate. In order to write the governing equations and thentary conditions in non-
dimensional form, the following non-dimensional quaestare introduced:

= w()y/> w = 4Vf;/> t= wozt/> u:i/> UZQ/? 0= T//_Té/o>
wo ! 41/ ! UO * UO/ /Tw _TOO 2
Pr = pycp7 Gr = gﬁy(Tw ,_2T’oo)7 Ge = gﬁ V(Cw/; Coo)’ R2 _ 1/404/27
K Uowy Upwy pepwyg
2 2 2 / / (29)
M2 — VNEUCHO 2V Sr — D kr (Tw — Too)
o 2 ' X0 T ey PO ' —C')’
pW; ) K'wy VTm( w o?) , ,
oV g U y Dnbr(CL=CL) 0L
D’ cp (T, —T.)’ vegep (T, —TL) cl,—C

In view of Egs. (2.7), (2.8) and (2.9), Egs. (2.2), (2.3) aBdb) reduce to the following
non-dimensional form
Momentum equation

10u wt

ZE — (1 + EA & )
Energy equation

100 00 1 (9% 9% ou\?

2 _ 1 wt) 27 — (== _ 2 v el )

15 (1+cde )ay o <8y2 R ) + (Du) <8y2> + (Ec) <8y> (2.11)
Species diffusion equation

10, WO _ 1Py (0
150 (1+cde )8y = 5c 0y + (Sr) 0 (2.12)

ou_100 o

- 2 2\( _
Oy 40t + y2 (M= +x")(u—=U) +Gro + Gep  (2.10)
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Equations (2.10), (2.11) and (2.12) are now subject to thmtbary conditions
t<0: u=0, =0, p=0forally

£ 0 u=0, =1 ¢=1ony=0 (2.13)
"l u—14+ee?, §—-0, ¢ —0asy — oo

The mathematical statement of the problem is now completieeanmbodies the solution of
Egs. (2.10), (2.11) and (2.12) focus to boundary conditi@%3). The skin-friction, Nusselt
number and Sherwood number are important material parasnfetethis type of boundary
layer flow. The skin-friction at the plate, which in the noiménsional form is given by

7! ou
Cy=—w — (= 2.14
/ pUOV <8y>y:0 ( )

The rate of heat transfer coefficient, which in the non-disi@mal form in terms of the Nusselt

number is given by
(gT’/> 00
A -1__ (%
x T T = NuRe, " = <8y>y:() (2.15)

The rate of mass transfer coefficient, which in the non-dgi@ral form in terms of the Sher-
wood number, is given by
(5)
9" ) =

— O = ShRe;'=— (8—“’> (2.16)
cr—
w y=0

/
o
whereRe, = U,z /v is the local Reynolds number.

Nu =

Sh =

3. NUMERICAL SOLUTION BY FINITE ELEMENT TECHNIQUE & STUDY OF GRID
INDEPENDENCE

3.1. Finite Element Technique. The finite element procedure (FEM) is a numerical and com-
puter based method of solving a collection of practical eegiing problems that happen in
different fields such as, in heat transfer, fluid mechani€$, [Ghemical processing [31], rigid
body dynamics [32], solid mechanics [33], and many othedsiellt is recognized by devel-
opers and consumers as one of the most influential numenedysas tools ever devised to
analyze complex problems of engineering. The superiofitthe method, its accuracy, sim-
plicity, and computability all make it a widely used appasain the engineering modeling and
design process. It has been applied to a number of substawatibematical models, whose dif-
ferential equations are solved by converting them into aimnatuation. The primary feature
of FEM ([34] and [35]) is its ability to describe the geometnythe media of the problem being
analyzed with huge flexibility. This is because the diszedton of the region of the problem is
performed using highly flexible uniform or non uniform piscar elements that can easily de-
scribe complex shapes. The method essentially consisssinang the piecewise continuous
function for the results and getting the parameters of thetfans in a manner that reduces the
fault in the solution. The steps occupied in the finite elenagralysis areas follows.
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Step 1. Discretization of the Domain: The fundamental concept of the FEM is to divide
the region of the problem into small connected pieces, a¢dildte elements. The group of
elements is called the finite element mesh. These finite elienase associated in a non over-
lapping manner, such that they completely cover the enpiaees of the problem.

Step 2: Invention of the Element Equations:

(1) A representative element is secluded from the mesh andatiational formulation of
the given problem is created over the typical element.

(2) Over an element, an approximate solution of the vanaliproblem is invented, and
by surrogating this in the system, the element equationgererated.

(3) The element matrix, which is also known as stiffness mgais erected by using the
element interpolation functions.

Step 3. Assembly of the Element Equations. The algebraic equations so achieved are
assembled by imposing the inter element continuity cooléti This yields a large number of
mathematical equations known as the global finite elemermtemaevhich governs the whole
domain.

Step 4: Imposition of the Boundary Conditions. On the accumulated equations, the
Dirichlet and Neumann boundary conditions (2.13) are iredos

Step 5: Solution of Assembled Equations. The assembled equations so obtained can be
solved by any of the numerical methods, namely, Gauss alimoim technique, LU decompo-
sition technique, and the final matrix equation can be sobxeterative technique. For com-
putational purposes, the coordinates varied from0 to y,.x = 10, wherey,,.x represents
infinity i.e., external to the momentum, energy and conegiain edge layers.

3.2. Variational formulation. The variational formulation connected with Eqgs. (2.10t2)
over a typical two-nodded linear elemént, y.+1) is given by

Yet1 ou ou OU 0%u
Yet1 00 00 829 4 8290 ou
g —R?— — L~ _4F = 3.2
/ye [6% oy Prc‘)y R 8 2 Cay }dy 0 (3.2)
Yet+1 Oy do 4 0% A
/y L‘?t By~ Gogyr 45758 |4 =0 (3.3)
where B = 4 (1+¢eAe™), N = 4 (M?+ x?) andwy, wy, w3 are arbitrary test functions

and may be viewed as the variation«in 6 and ¢ respectively. After dropping the order of
integration and non-linearity, we appear at the followiggtem of equations.

/yeﬂl (wn) (3) = B (w) (52) +4 (%) (8—;)+N(w1)u—4(ar)(w1)9]dy
e —4(Ge) (wr1) @ — N (w1) U — G (wn)

Ye+1
fen ()L
Ye
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e [ () (30) = B () (30) + 7 (%2) (30 + s (wo) B2
o @ S 1
- {4 () 4(Du) (ws) (g—ﬂyeﬂ —0 (3.5)

Y
[l () ()4 () (5) o0 (5) ()
() (§)- s ()]

3.3. Finite Element formulation. The finite element model may be obtained from Eqs. (3.4)-
(3.6) by replacing finite element approximations of the form

2 2 2
u=Y ufy§, 0= 6505, o=y 5 (3.7)
j=1 j=1 j=1

with wy = wy = wg = ¢j (1 =1, 2), whereu$, 67 andy§ are the velocity, temperature
and concentration respectively at tfté node of typicakth element(y., y.1) andy{ are the
shape functions for this elemefi., y.+1) and are taken as:

(3.6)

i = 2L andys = Yy <y <y (3.8)
Yet+1 — Ye Yet+1 — Ye
The finite element model of the equations éoh element thus formed is given by

KK (ES) ] e ] OT MY (M) (M) T () o)

K2) (K2 (K2 || {e} [+] 2] 2] ) || {e) | = | ()

![K?’l] K] [Ki”?’]] Lsoe}] LM?’H [M%] [M?’S]] !{w}] !{b?’@}]
(3.9)

where{[K™], [M™]} and{{u}, {6}, {¢}, {u'}, {6}, {¢} and{b"<} } (m, n

= 1, 2, 3) are the set of matrices of ord2rx 2 and2 x 1 respectively. These matrices are
defined as follows

Ye+1
Miljl = / (¢Ze) (¢]e)dy7 lejz = lejg = 07

- o (oo [50)(22)
it =—n [ e (G ) o [ (50) (B) o

Ye+1

i =n [ e @la— v+ (57)| [ i

Ye

e = —aler v e [ @i k3 = —awo [ o (5) (52)]

Ye
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2 Ye+1 . oS 4 Ye+1 31/15 s
wi=n [l G ) [ 1(5) (3) o

4 Ye+1 Yetl [ )¢ oYs
K¥ = — 2/ €ld —D/ i I \dy., M2 = M2 =
1] PI‘R Ve [1/17,] y U Ve ay 8y y7 1] 1] 07

Ye+1

v = [ o) () 3 = =0, 01 = [ ) (05)

i =0 = a0 [ (55) (52)

g oo (Do [ (5) ()
(G () (50) o (G

() () - ()]

In one-dimensional space, linear and quadratic elementslement of higher order can
be taken. The entire flow province is divided into 11000 gatdrelements of equal size.
Each element is three-noded, and therefore the whole doroaiiains 21001 nodes. At each
node, four functions are to be evaluated; hence, after ddgavhthe element equations, we
acquire a system of 81004 equations which are nonlineareidre, an iterative scheme must
be developed in the solution. After striking the boundarmpditions, a system of equations
has been obtained which is solved mathematically by the $alisination method while
maintaining a correctness of 0.00001. A convergence mitdrased on the relative difference
between the present and preceding iterations is employduknwhese differences satisfy the
desired correctness, the solution is assumed to have begnegated and iterative process is
terminated. The Gaussian quadrature is applied for solthegntegrations. The computer
cryptogram of the algorithm has been performed in MATLABming on a PC. Excellent
convergence was completed for all the results.

3.4. Study of Grid Independence. In general, to study the grid independency/dependency,
how should the mesh size be varied in order to check the solati different mesh (grid) sizes
and get a range at which there is no variation in the solutid¢fesshowed the numerical values
of velocity (u), temperatured) and concentrationy) for different values of mesh (grid) size
at timet = 1.0 in the following table 1.

From this table 1, we observed that there is no variationdrvitiues of velocity (u), temper-
ature @) and concentrationy) for different values of mesh (grid) size at time- 1.0. Hence,
we conclude that, the results are independent of mesh &jzel)



TABLE 1. The numerical values af, § and¢ for variation of mesh sizes at= 1.0

Mesh (Grid) size- 0.01

Mesh (Grid) size- 0.001

u

6

¥

u

0

¥

0.000000

1.000000

1.000000

0.000000

1.000000

1.000000

2.974329

0.369802

0.548479

2.974329

0.369802

0.548479

3.370421

0.169484

0.274438

3.370421

0.169484

0.274438

3.026220

0.081939

0.135010

3.026220

0.081939

0.135010

2.577752

0.040053

0.066201

2.577752

0.040053

0.066201

2.210582

0.019617

0.032440

2.210582

0.019617

0.032440

1.949927

0.009608

0.015892

1.949927

0.009608

0.015892

1.771644

0.004700

0.007776

1.771644

0.004700

0.007776

1.640400

0.002287

0.003788

1.640400

0.002287

0.003788

1.518096

0.001087

0.001806

1.518096

0.001087

0.001806

1.358957

0.000461

0.000777

1.358957

0.000461

0.000777

Mesh (Grid) size-

0.0001

Mesh (Grid) size-

0.00001

u

6

¥

u

0

¥

0.000000

1.000000

1.000000

0.000000

1.000000

1.000000

2.974329

0.369802

0.548479

2.974329

0.369802

0.548479

3.370421

0.169484

0.274438

3.370421

0.169484

0.274438

3.026220

0.081939

0.135010

3.026220

0.081939

0.135010

2.577752

0.040053

0.066201

2.577752

0.040053

0.066201

2.210582

0.019617

0.032440

2.210582

0.019617

0.032440

1.949927

0.009608

0.015892

1.949927

0.009608

0.015892

1.771644

0.004700

0.007776

1.771644

0.004700

0.007776

1.640400

0.002287

0.003788

1.640400

0.002287

0.003788

1.518096

0.001087

0.001806

1.518096

0.001087

0.001806

1.358957

0.000461

0.000777

1.358957

0.000461

0.000777
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4. PROGRAM VALIDATION AND COMPARISON WITH PREVIOUS RESEARCH

In order to check on the correctness of the numerical tecienicsed for the solution of the
problem considered in the present study, it was autheatichy performing simulation for
numerical solutions for the effects of radiation and maasgfer on an unsteady magnetohy-
drodynamic free convective flow past a heated vertical @aibedded in a porous medium in
presence of viscous dissipation which are reported by Brasd Reddy [13]. Tables 2, 3, 4
and 5 show the calculated values for skin-friction, Rateaxtrand mass transfer coefficients
for the present solution whesy = Du = 0, and the results in published by Prasad and Reddy
[13]. Tables 2, 3, 4 and 5 show a very good concurrence bettveeresults and this lends
confidence to the present numerical code.
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TABLE 2. Comparison between present skin-fricti@ri;) and Nusselt num-
ber(Nu Re; ') results with the resulteC’;, Nu*Re, ') of Prasad and Reddy
[13] for different values oftc.

Ec Cy Cy Nu Re, !

0.0 | 1.63024458 1.6302| 3.33965172
0.001| 1.48365516 1.4836| 3.09564923
0.010| 0.16443199 0.1644| 0.89964186

Nu* Re, !
3.3396
3.0956
0.8996

TABLE 3. Comparison between present skin-fricti@ri;) and Nusselt num-
ber(Nu Re; ') results with the resulteC’;, Nu*Re, ') of Prasad and Reddy
[13] for different values ofR.

R Cy i Nu Re;' | Nu* Re;!
0.0 3.76701694 3.7670| 0.67210943 0.6721
0.5] 3.47752292 3.4775| 1.10649216 1.1064
1.0| 3.32915508 3.3291| 1.35993044 1.3599
1.5| 3.09568774 3.0956| 1.48367628 1.4836

TABLE 4. Comparison between present skin-frictiof';) and Sherwood
number (Sh Re;!) results with the result$C%, Sh*Re, ') of Prasad and
Reddy [13] for different values ofc.

Sc

Cy

O*

Sh Re; !

Sh* Re; !

0.22

3.73162208

f
3.7316

0.22011848

0.2201

0.60

3.47751182

3.4775

0.60183321

0.6018

0.78

3.39804066

3.3980

0.78044923

0.7804

0.94

3.34001101

3.3400

0.94031584

0.9403

TABLE 5. Comparison between present skin-fricti@r ) results with the re-
sults(C}t) of Prasad and Reddy [13] for different valuesaf andGe.

ar| Ci [[Ge| Gy of

2.52780649 2.5278| 0 | 2.80126472 2.8012
310972669 3.0197| 1 | 3.47753994 3.4775
3.47751623 3.4775| 2 | 4.14845501 4.1484
3.88681047 3.8868| 3 | 4.81384067 4.8138

WIN| | O
WIN| | O
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5. DISCUSSION OF THE RESULTS

In the preceding sections, we have prepared and solved ddepr of an unsteady MHD
free convection flow past an infinite heated vertical platecunded in a porous medium with
thermal-diffusion, diffusion-thermo, viscous dissipatiand radiation. By interesting, the op-
tically thin differential approximation for the radiativesat flux in the energy equation. In the
numerical calculation, the Prandtl numbét(= 0.71) which corresponds to air and different
values of the stuff parameters are used. In addition, thedemy conditiony — oo is approx-
imated byy...x = 10, which is adequately large for the velocity to approach therepriate
stream velocity. The temperature and the species contentrare coupled to the velocity
through Grashof number for heat and mass transfer as seaqn i{2E0). For assorted values
of Grashof number for heat and mass transfer, the velocitfiles « are plotted in Figs. 2 (a)
and 2 (b).

B 4
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. 2’ e T "
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Ge=2.0,Pr=0.71,5:=0.22,n=0.1, }IG.?"=I.O.PI'=O.-"'1.SC=Ol.“P'I=0‘J.4
14=1.0,4=0.01, Ec=0.001, = 0.5, M=104=001 Eo=0.001, y=0.5,
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FIGURE 2. Effect of (a)Gr, (b) Gc on velocity profiles

The Grashof number for heat transfer indicates the relatifect of the thermal buoyancy
force to the viscous hydrodynamic force in the boundaryayes expected, it is observed
that there is a increase in the velocity due to the enhandeofahermal buoyancy force.
Also, asGr raises, the peak values of the velocity increases quickdy tiee porous plate and
then decomposes smoothly to the free stream velocity. Thshef number for mass transfer
characterizes the ratio of the buoyancy force to the visbgdsodynamic force. As usual, the
fluid velocity increases and the peak value is more distiaatiue to enhance in the species
buoyancy force. The velocity distribution reaches a disive greatest value in the locality of
the plate and then decreases properly to move towards thestiream value. It is perceived
that the velocity magnifies with increasing values of Grashunber for mass transfer.

Fig. 3 (a) demonstrates the velocity profiles for dissimilalues of Prandtl numbePr.
The mathematical results show that the effect of growingieslof Prandtl number result in



322 R. S. RAJU

diminishing velocity. The nature of velocity profiles in pence of distant species suchSxts
= 0.22 (Hydrogen), 0.30 (Helium), 0.60 (Oxygen) and 0.78 (Aonim) are showing in Fig. 3
(b).

LN TBE=0.71,10,76,11.62 - Sc=10.22.0.30.0.66.0.78
N\ —

1 ¥~ \\ 1 BT
IR X
; N ! "
T R 14 ™ e

2 4 2
p t“!’--«:.‘,‘_“_‘ ! e
Gr=2.0, Go=2.0,5:=0120,n=01; Gr=2.0, Go=2.0,5:=0120,n=01;
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| E=210.5=200Du=20,:=10,6=0.001 | E=20.5=200Du=20,:=10,6=0.001
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FIGURE 3. Effect of (a)Pr, (b) Sc on velocity profiles

The flow field experiences a decrease in velocity at all pomettendance of heavier dif-
fusing species. The results of the magnetic field paranmidtés shown in Fig. 4 (a).
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FIGURE 4. Effect of (a)M, (b) x on velocity profiles

It is noticed that the velocity of the fluid diminishes withethaises of the magnetic field
parameter values. The reduce in the velocity as the HartmantberM increases is because
the occurrence of a magnetic field in an electrically conidgcfluid initiates a force called
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the Lorentz force, which acts adjacent to the flow when thenatg field is acted in the
perpendicular direction, as in the present study. Thistigsiforce deliberates down the fluid
velocity component as shown in Fig. 4 (a). Fig. 4 (b) showsetfiects of Darcy numbey
on the velocity profiles for cooling as well as heating of th&tg For a cooling plate fluid
velocity increases, while for a heating plate it decreasiis iwcrease ofy. Darcy number
is the capacity of the porosity of the medium. With incregsporosity of the medium, the
value of xy increases. For large porosity of the medium fluid acquiresenspace to flow as
a consequence its velocity increases. The effect of thendleradiation parameteR on the
velocity and temperature profiles in the boundary layer areahstrated in Figs. 5 (a) and 5
(b), respectively.
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FIGURE 5. Effect of (a)R on velocity, (b)R on temperature profiles

With increasing the thermal radiation parame®eonstructs significant boost in the thermal
condition of the fluid and its thermal boundary layer. Thisr@ase in the fluid temperature
brings more flow in the boundary layer reasoning the veladfityre fluid there to increase. The
influence of the viscous dissipation (Eckert number) patanma the velocity and temperature
profiles are shown in Figs. 6 (a) and 6 (b), respectively.

The relationship between the kinetic energy in the flow ardetfithalpy is given by Eckert
number. It represents the exchange of kinetic energy iéonal energy by work done against
the viscous fluid stresses. Larger viscous dissipative daates a grow in the temperature as
well as the velocity. This performance is evident from Figga) and 6 (b). Figs. 7 (a) and
7 (b) describe the velocity and concentration profiles féfedent values of the Soret (thermal
diffusion) number.
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FIGURE 7. Effect of (a)Sron velocity, (b)Sron concentration profiles

The Soret number classifies the effect of the temperatudkagrs inducing significant mass
diffusion effects. It is observed that an increase in theeSoumber results in an increase in
the velocity and concentration within the boundary layeor #ifferent values of the Dufour
(diffusion thermo) number, the velocity and temperaturefifgs are designed in Figs. 8 (a)
and 8 (b), respectively.

The Dufour number signifies the contribution of the concaidn gradients to the thermal
energy flux in the flow. It is institutes that an increase inEhgour number causes a rise in the
velocity and temperature all over the boundary layer. Fartémperature profiles decompose
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FIGURE 8. Effect of (a)Du on velocity, (b)Du on temperature profiles

smoothly from the plate to the free stream value. Howeverdatistinct velocity overshoot
exists near the plate, and thereafter the profile falls to aethe edge of the boundary layer.

1 1

§ Gr=20,Gc=20,5:=0.22, n=0.1, Gr=20,Gc=20Pr=0.71, n=0.1,
Y M=1.0,A=0.01, Ec=0.001, »=0.5, M=1.0,A=0.01, Ec=0.001, »=0.5,
k R=20.53qr=20,0Du=2.0.t=1.0.2=0.001 \ R=20.5qr=20,0Du=2.0.t=1.0.g=0.001
fal \ ;;5 A
. ”. -
X‘ AN
0.5 - E'\ 0.5 .
\. Pr=071,1070,1162 N\
e \_
\
K -
e
0 : S R 0
0 2 4 6 8 10 0

FIGURE 9. Effects of (a)Pr on temperature, (byc on concentration profiles

Fig. 9 (a) illustrate the temperature profiles for dissimilalues of Prandtl number Pr. It is
scrutinized that the temperature decrease as an incredfsrfgrandtl number. The reason is
that smaller values of Pr are equivalent to amplify in thertied conductivity of the fluid and
then heat is able to diffuse away from the heated surface mookly for higher values of Pr.
Hence in the case of lesser Prandtl number the thermal boutadeer is substantial and the
rate of heat transfer is reduced. Fig. 9 (b) shows the coratéori field due to dissimilarities
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in Schmidt number for the gasses Hydrogen, Helium, Oxygehfammonia. It is observed
that concentration field is progressively for Hydrogen arwpd rapidly for Oxygen and Am-
monia in assessment to water-vapour. Thus Hydrogen candakfas preserving effective
concentration field and water-vapour can be used for susgamormal concentration field.

5.1. Local skin-friction (C). The numerical values of local skin-friction are presented i
table 6 for dissimilar values of Magnetic field (Hartmann roer), Porosity parameter (Darcy
number), Soret and Dufour numbers. It is observed from #bketthat

e The skin-friction increases from 2.95431478 to 3.269814/48B decreasing the value
of M from 4.0 to 2.0, while reverse effect is found fer(skin-friction decreases from
3.01140566 to 2.88523694 with increasing the valug obm 2.0 to 3.0).

e The skin-friction increases &r increases from 1.0 to 2.0; thereafter however it in-
creases with a succeeding valueSoto 3.0 through to the least value of 1.0.

e Dufour number Du) has towering impact on skin-friction. The skin-frictiontences
from 3.26981158 to 3.46317524 with increasing the valuBwfrom 1.0 to 3.0.

TABLE 6. Variation of numerical values of skin-frictiorC() for different
values ofM, Sr, Duandy

M X Sr Du Cy
2.0 1.0 1.0 1.0 3.26981158
4.0 2.95431478
6.0 2.61228304
2.0 3.01140566
3.0 2.88523694
2.0 3.36951587
3.0 3.45902413
2.0 3.37683951]
3.0 3.46317524

5.2. Local rate of heat transfer (Nu Re;!). The graphical results of local rate of heat trans-
fer are presented in Figs. 10 (a), 10 (b) and 11 (a) for dispaedues of Eckert number, Dufour
number and thermal radiation parameter, respectivelg.dbserved from these figures that

e Anincrease in Dufour number gradually increases the madaibf Nusselt number.

e The effectiveness of the thermal radiation parameter res ilapact on rate of heat
transfer. i.e. the Nusselt number diminishes when incngathe thermal radiation
parameter.

e Rate of heat transfer enhances with increasing of viscasspdition (Eckert number)
parameter.
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FIGURE 10. Effects of (aEc, (b) Du on rate of heat transfer

5.3. Local rate of mass transfer (Sh Re;!). The results of local rate of mass transfer are
presented in Fig. 11 (b) for changed values of Soret numbisrobserved from this table that
the effect of Soret number is seen more prominently for rhteass transfer i.e., there is sharp
increase in the value of rate of mass transfer.
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FIGURE 11. Effect of (a)R, (b) Sr on rate of mass transfer

The comparison of rate of heat and mass transfer coefficientifferent values of Eckert
number EC) are shown in the Fig. 12.

From this figure, we noticed that the curves for rate of hedtraass transfer coefficients
are close to each other. This means that, the numericalsvafuthese coefficients are almost
concur each other.
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FIGURE 12. Comparison of rate of heat and mass transfer coefficients
different values oEc

6. SUMMARY AND CONCLUSIONS

In the current study, the flow of an unsteady magnetohydraaiyn free convection past an
infinite vertical plate in a porous medium under the syncizeah effects of thermal-diffusion,
diffusion-thermo, viscous dissipation and radiation iaggerated by the stuff parameters. The
governing equations are estimated to a system of lineaiapdifferential equations by using
finite element method. The results are opened graphicathwancan conclude that the flow
field and the quantities of physical awareness are signtficariluenced by these parameters.

(1) Larger viscous dissipative heat causes an increase itethperature plus the velocity
profiles.

(2) As thermal radiation parameter increases, then thexeise in both velocity and tem-
perature profiles.

(3) The numerical results designate that the velocity imees with the increase in Grashof
number for heat transfer and mass transfer, Darcy paraméige it decreases as the
magnetic field parameter, Prandtl number and Schmidt numbezases.

(4) Dufour effects deeply influence the temperature proiiidbe thermal boundary layer
i.e. temperature profiles increases with the increase iDttieur number.

(5) Soret effects are to enhance the concentration difiibwith formation of concentra-
tion peak for superior values of Soret parameter in the aquragéon boundary layer.

(6) The numerical results obtained and compared with fodsnreported cases available
in the open literature and they are found to be in very good@wance.

The analysis has shown that the temperature and concentffélds are appreciably predis-
posed by the Dufour and Soret effects. Thus we conclude ¢haoime kind of mixture (i.e.,

H,, Air) with the light molecular weight, the Soret and Dufour eféeplay an important role

and should be considered in future studies.



NOMENCLATURE

Coordinate axis along the plate:}
Sherwood number

Coordinate axis normal to the platex)
Planck’s function

Dimensional time £)

Velocity component in:’-direct. ¢ns=1)
Velocity component in/-direct. (ns=!)
Acceleration due to gravityns—?2)
Fluid temperature°(C')

Fluid temperature at free streafit})
Concentration at the walli(g m~3)
Specific heat at constant pressure
Pressureym—2)

Dimensionless plate velocityr{s )
Dimensional suction velocitynfs—!)
Concentration susceptibilityr{mole—1)
Hartmann number

Grashof number for heat transfer
Dimensional porosity parameten{)
Concentration at free streamk m —3)
Thermal Radiation parameter
Skin-friction Coefficient (Vm=2)
Dimensional free stream velocityns ')

Rate of heat transfer (or) Nusselt number K,

A
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Dimensionless Coordinate
axis along the plate)(
Dimensionless Coordinate
axis normal to the plate: |
Dimensionless times(
Dimensionless Velocityrfs—!)
Transverse magnetic fieldesia)
Schmidt number
Fluid temperature at the wall(')
Fluid Concentration & gm—3)
Dufour number
Solute mass diffusivityr?s—1)
Soret number
Free stream velocityngs—!)
Molecular diffusivity (n2s—1)
Radiative heat fluxiy/m—2)
Prandtl number

Grashof number for mass transfer

Origin

Eckert number

Mean absorption coefficient
Mean fluid temperature
Small positive parameter
Mean Absorption coefficient
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(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
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GREEK SYMBOLS

Coefficient of thermal expansior(~!) p  Fluid density K gm—3)

Small positive parameter v Kinematic viscosity 6225~ 1)

Shear stress\m—2) 6  Dimensionless temperatura()

Dimensionless concentratiof m —3) w’ Free stream frequency of oscillation

Darcy number K d—?) te Magnetic Permeability/fm =)

Radiation absorption coefficient¢®s~!)  o* Stefan-Boltzmann constant

Thermal conductivity m 'K 1) w Dimensionless free stream

Electrical conductivity §m 1) frequency of oscillations 1)

Coefficient of Compositional expansion

Superscript

Differentiation w.r.t. toy

Subscripts

Wall condition oo Free stream condition
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