• Title/Summary/Keyword: medical applications

Search Result 1,715, Processing Time 0.037 seconds

A Highly-Integrated Analog Front-End IC for Medical Ultrasound Imaging Systems (초음파 의료 영상시스템용 고집적 아날로그 Front-End 집적 회로)

  • Banuaji, Aditya;Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.49-55
    • /
    • 2013
  • A high-voltage highly-integrated analog front-end (AFE) IC for medical ultrasound imaging applications is implemented using standard 0.18-${\mu}m$ CMOS process. The proposed AFE IC is composed of a high-voltage (HV) pulser utilizing stacked transistors generating up to 15 Vp-p pulses at 2.6 MHz, a low-voltage low-noise transimpedance preamplifier, and a HV switch for isolation between the transmit and receive parts. The designed IC consumes less than $0.15mm^2$ of core area, making it feasible to be applied for multi-array medical ultrasound imaging systems, including portable handheld applications.

Polypyrrole-Coated Woven Fabric as a Flexible Surface-Heating Element

  • Lee, Jun-Young;Park, Dong-Won;Lim, Jeong-Ok
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.481-487
    • /
    • 2003
  • Polypyrrole (PPy) was coated sequentially by chemical and electrochemical methods on a woven fabric, giving rise to a fabric having high electrical conductivity. We investigated the effects of the preparation conditions on the various properties of the resulting fabric. The PPy-coated fabric with optimum properties was obtained when it was prepared sequentially by chemical polymerization at the elevated temperature of 100$^{\circ}C$ under a pressure of 0.9 kgf/$\textrm{cm}^2$ and then electrochemical polymerization with a 3.06 mA/$\textrm{cm}^2$ current density at 25 $^{\circ}C$ for 2 hrs with the separator plate. The surface resistivity of the resulting fabric was as low as 5 Ω/$\square$ .The PPy-coated fabric prepared under the optimum conditions showed practically applicable heat generating property. When electrical power was supplied to the fabric using a commercial battery for a mobile phone (3.6 V, LGLl-AHM), the temperature of the fabric increased very quickly from room temperature to ca. 55 $^{\circ}C$ within 2 min and was maintained for ca. 80 min at that temperature. The heat generating property of the fabric was extremely stable, exhibiting similar behavior over 10 repeated cycles. Therefore, we suggest that the PPy-coated fabric in this study may be practically useful for many applications, including flexible, portable surface-heating elements for medical or other applications.

A study on Improvement for distorted images of the Digital X-ray Scanner System based on Fuzzy Correction Algorithm

  • Baek, Jae-Ho;Kim, Kyung-Jung;Park, Mi-Gnon
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.173-176
    • /
    • 2005
  • This paper proposes a fuzzy correction algorithm that can correct the distorted medical image caused by the scanning nonlinear velocity of the Digital X-ray Scanner System (DX-Scanner) using the Multichannel Ionization Chamber (MIC). In the DX-Scanner, the scanned medical image is distorted for reasons of unsuitable integration time at the nonlinear acceleration period of the AC servo motor during the inspection of patients. The proposed algorithm finds the nonlinear motor velocity modeling through fuzzy system by clustering and reconstructs the normal medical image lines by calculating the suitable moving distance with the velocity of the motor using the modeling, acceleration time and integration time. In addition, several image processing is included in the algorithm. This algorithm analyzes exact pixel lines by comparing the distance of the acceleration period with the distance of the uniform velocity period in every integration time and is able to compensate for the velocity of the acceleration period. By applying the proposed algorithm to the test pattern for checking the image resolution, the effectiveness of this algorithm is verified. The corrected image obtained from distorted image is similar to the normal and better image for a doctor's diagnosis.

  • PDF

Microarrays for the Detection of HBV and HDV

  • Sun, Zhaohui;Zheng, Wenling;Zhang, Bao;Shi, Rong;Ma, Wenli
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.546-551
    • /
    • 2004
  • The increasing pace of development in molecular biology during the last decade has had a direct effect on mass testing and diagnostic applications, including blood screening. We report the model Microarray that has been developed for Hepatitis B virus (HBV) and Hepatitis D virus (HDV) detection. The specific primer pairs of PCR were designed using the Primer Premier 5.00 program according to the conserved regions of HBV and HDV. PCR fragments were purified and cloned into pMD18-T vectors. The recombinant plasmids were extracted from positive clones and the target gene fragments were sequenced. The DNA microarray was prepared by robotically spotting PCR products onto the surface of glass slides. Sequences were aligned, and the results obtained showed that the products of PCR amplification were the required specific gene fragments of HBV, and HDV. Samples were labeled by Restriction Display PCR (RD-PCR). Gene chip hybridizing signals showed that the specificity and sensitivity required for HBV and HDV detection were satisfied. Using PCR amplified products to construct gene chips for the simultaneous clinical diagnosis of HBV and HDV resulted in a quick, simple, and effective method. We conclude that the DNA microarray assay system might be useful as a diagnostic technique in the clinical laboratory. Further applications of RD-PCR for the sample labeling could speed up microarray multi-virus detection.

A Novel WBAN MAC protocol with Improved Energy Consumption and Data Rate

  • Rezvani, Sanaz;Ghorashi, S. Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2302-2322
    • /
    • 2012
  • Wireless Body Area Networks (WBANs) are introduced as an enabling technology in tele-health for patient monitoring. Designing an efficient Medium Access Control (MAC) protocol is the main challenge in WBANs because of their various applications and strict requirements such as low level of energy consumption, low transmission delay, the wide range of data rates and prioritizing emergency data. In this paper, we propose a new MAC protocol to provide different requirements of WBANs targeted for medical applications. The proposed MAC provides an efficient emergency response mechanism by considering the correlation between medical signals. It also reduces the power consumption of nodes by minimizing contention access, reducing the probability of the collision and using an efficient synchronization algorithm. In addition, the proposed MAC protocol increases the data rate of the nodes by allocating the resources according to the condition of the network. Analytical and simulation results show that the proposed MAC protocol outperforms IEEE 802.15.4 MAC protocol in terms of power consumption level as well as the average response delay. Also, the comparison results of the proposed MAC with IEEE 802.15.6 MAC protocol show a tradeoff between average response delay and medical data rate.

Effect of Graphene on Growth of Neuroblastoma Cells

  • Park, Hye-Bin;Nam, Hyo-Geun;Oh, Hong-Gi;Kim, Jung-Hyun;Kim, Chang-Man;Song, Kwang-Soup;Jhee, Kwang-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.274-277
    • /
    • 2013
  • The unique properties of graphene have earned much interest in the fields of materials science and condensedmatter physics in recent years. However, the biological applications of graphene remain largely unexplored. In this study, we investigate the cell culture conditions, which are exposed to graphene onto glass and $SiO_2$/Si using human nerve cell line, SH-SY5Y. Cell viability was 84% when cultured on glass and $SiO_2$/Si coated with graphene as compared to culturing on polystyrene surface. Fluorescence data showed that the presence of graphene did not influence cell morphology. These findings suggest that graphene may be used for biological applications.

Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications

  • Aboalatta, A.;Asad, J.;Humaid, M.;Musleh, H.;Shaat, S.K.K.;Ramadan, Kh;Sayyed, M.I.;Alajerami, Y.;Aldahoudi, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3058-3067
    • /
    • 2021
  • Sodium zinc borate glasses doped with dysprosium and modified with different concentrations of barium oxide (0-50 mol %) were fabricated using the melting quenching technique. The structural properties of the prepared glass systems were characterized using XRD and FTIR methods. The absorption spectra of the prepared glasses were measured to determine their energy gap and their related optical properties. The density of the glasses and other physical parameters were also reported. Additionally, with the help of Photon Shielding and Dosimetry (PSD) software, we investigated the radiation shielding parameters of the prepared glass systems at different energy values. It was found that an increase in the density of the glasses by increasing the concentration of BaO significantly improved the gamma ray shielding ability of the samples. For practical results, a compatible irradiation set up was designed to check the shielding capability of the obtained glasses using a gamma ray source at 662 keV. The experimentally obtained results strongly agreed with the data obtained by PDS software at the same energy. These results demonstrated that the investigated glass system is a good candidate for several radiation shielding applications when comparing it with other commercial shielding glasses and concretes.

Implications of 3-Dimensional Printed Spinal Implants on the Outcomes in Spine Surgery

  • Fiani, Brian;Newhouse, Alexander;Cathel, Alessandra;Sarhadi, Kasra;Soula, Marisol
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.495-504
    • /
    • 2021
  • Three-dimensional printing (3DP) applications possess substantial versatility within surgical applications, such as complex reconstructive surgeries and for the use of surgical resection guides. The capability of constructing an implant from a series of radiographic images to provide personalized anatomical fit is what makes 3D printed implants most appealing to surgeons. Our objective is to describe the process of integration of 3DP implants into the operating room for spinal surgery, summarize the outcomes of using 3DP implants in spinal surgery, and discuss the limitations and safety concerns during pre-operative consideration. 3DP allows for customized, light weight, and geometrically complex functional implants in spinal surgery in cases of decompression, tumor, and fusion. However, there are limitations such as the cost of the technology which is prohibitive to many hospitals. The novelty of this approach implies that the quantity of longitudinal studies is limited and our understanding of how the human body responds long term to these implants is still unclear. Although it has given surgeons the ability to improve outcomes, surgical strategies, and patient recovery, there is a need for prospective studies to follow the safety and efficacy of the usage of 3D printed implants in spine surgery.

Biphasic Electrical Nerve Stimulator for Medical Applications Generating a Wide Range of Pulse Specifications Without Microcontroller

  • Jun Sang Yu;Dong Rim Kim;Su Bin Kang;Jung Suk Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.173-178
    • /
    • 2024
  • We present an improved biphasic electrical nerve stimulator designed to overcome limitations. Traditional electrical nerve stimulators lacking a microcontroller unit (MCU) have restrictions in terms of frequency, pulse duration, and amplitude control, making them insufficient for medical applications requiring a broader range of pulse specifications. To address this, we developed a stimulator with enhanced capabilities. By not using an MCU, the design reduces power consumption and the required area, simplifying the overall design and increasing efficiency. In addition, our approach optimizes oscillator parameters to achieve wide frequency and pulse duration ranges. Specifically, we expanded the frequency range of the stimulator up to from 1 mHz to 100 kHz and the pulse duration up to from 5 ㎲ to 500 s. Improved amplitude control mechanisms were implemented for adjustable and high biphasic amplitudes. Furthermore, we added a balancing circuit to ensure proper discharging for tissue safety when biphasic pulses do not occur. The improved stimulator demonstrated an increase in operational range compared to traditional MCU-less designs, producing consistent biphasic pulses with adjustable amplitude and duration. The balancing circuit effectively managed discharging, reducing the risk of tissue damage and ensuring safety and efficacy.

Regioselective Acylation on Glycol Chitosan (글라이콜 키토산의 위치선택적 아실화)

  • Lee, Wonbum;Park, Chong-Rae
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.297-298
    • /
    • 2003
  • Chitin is a natural biopolymer that, with its derivative chitosan, has been represented as a biomaterial with considerable potential in wide ranging medical applications. But there are some limitations in using chitosan as attained, for instance, the problem of water solubility$^1$. In order to use chitosan in various applications (e.g. drug carrier), chemical modifications are often necessary$^2$. (omitted)

  • PDF