DOI QR코드

DOI QR Code

A Highly-Integrated Analog Front-End IC for Medical Ultrasound Imaging Systems

초음파 의료 영상시스템용 고집적 아날로그 Front-End 집적 회로

  • Banuaji, Aditya (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology) ;
  • Cha, Hyouk-Kyu (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology)
  • Received : 2013.11.01
  • Accepted : 2013.11.20
  • Published : 2013.12.25

Abstract

A high-voltage highly-integrated analog front-end (AFE) IC for medical ultrasound imaging applications is implemented using standard 0.18-${\mu}m$ CMOS process. The proposed AFE IC is composed of a high-voltage (HV) pulser utilizing stacked transistors generating up to 15 Vp-p pulses at 2.6 MHz, a low-voltage low-noise transimpedance preamplifier, and a HV switch for isolation between the transmit and receive parts. The designed IC consumes less than $0.15mm^2$ of core area, making it feasible to be applied for multi-array medical ultrasound imaging systems, including portable handheld applications.

초음파 의료 영상 응용 분야를 위한 고전압 고집적 아날로그 front-end 집적회로를 0.18-${\mu}m$ 표준 CMOS 반도체 공정을 이용하여 구현하였다. 제안 된 아날로그 front-end 집적회로는 2.6 MHz에서 15 Vp-p 전압까지 동작하는 트랜지스터 stacking구조를 이용한 고전압 펄서와, 저전압에서 동작하는 저잡음 transimpedance 증폭기, 그리고 송신부와 수신부의 분리를 위한 고전압 차단 스위치로 구성되어 있다. 설계 된 집적회로는 $0.15mm^2$ 이하의 작은 면적을 사용함으로써 휴대용 영상 시스템을 포함한 다중 어레이 초음파 의료 영상 시스템에 적용이 가능하다.

Keywords

References

  1. K. Iniewski, Medical Imaging, John Wiley & Sons, p. 305, 2009.
  2. K. Chen, A.P. Chandrakasan, C.G. Sodini, "Ultrasonic imaging front-end design for CMUT: A 3-level 30 vpp pulse-shaping pulser with improved efficiency and a noise-optimized receiver," in Proc. IEEE Asian Solid-State Circ. Conf., 2012, pp. 173-176
  3. B.T. Khuri-Yakub and O. Oralkan, "Capacitive micromachined ultrasound transducers for medical imaging and therapy,"J. Micromechanics and Microengineering vol. 21, 2011.
  4. R. Chebli and M. Sawan, "Fully integrated high-voltage front-end interface for ultrasonic sensing applications," IEEE Trans. Circuits and Systems, vol. 54, no. 1, pp.179-190, Jan. 2007. https://doi.org/10.1109/TCSI.2006.888675
  5. B Serneels, T. Piessens, M. Steyaert, and W. Dehaene, "A high-voltage output driver in a 2.5-V 0.25-${\mu}m$ CMOS technology," IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 576-583, Mar. 2005. https://doi.org/10.1109/JSSC.2005.843599
  6. H.-K. Cha, D. Zhao, J.H. Cheong, B. Guo, H. Yu, and M. Je, "A CMOS high-voltage transmitter IC for ultrasound medical imaging applications," IEEE Trans. Circuits and Systems II, vol. 60, no. 6, pp. 316-320, Jun. 2013. https://doi.org/10.1109/TCSII.2013.2258260
  7. G. Gurun, P. Hasler, and F.L. Degertekin, "Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 8, pp. 1658-1668, Aug. 2011. https://doi.org/10.1109/TUFFC.2011.1993
  8. J. Lee, J. Shin, S. M. Park, "4-channel 2.5-Gb/s/ch CMOS optical receiver array for active optical HDMI cables," Journal of IEEK, SD, vol. 49, no.8, pp. 22-26, 2012.
  9. J. Liu, H. Liao, and R. Huang, "0.5V ultra-low power wideband LNA with forward body bias technique," Electronic Lett. vol. 45, no. 6, pp.289-290, Jun. 2009. https://doi.org/10.1049/el.2009.3150