Browse > Article
http://dx.doi.org/10.3340/jkns.2020.0272

Implications of 3-Dimensional Printed Spinal Implants on the Outcomes in Spine Surgery  

Fiani, Brian (Department of Neurosurgery, Desert Regional Medical Center)
Newhouse, Alexander (Department of Orthopedic Surgery, Rush University Medical Center)
Cathel, Alessandra (Department of Neurosurgery, Desert Regional Medical Center)
Sarhadi, Kasra (Department of Neurology, University of Washington)
Soula, Marisol (New York University School of Medicine)
Publication Information
Journal of Korean Neurosurgical Society / v.64, no.4, 2021 , pp. 495-504 More about this Journal
Abstract
Three-dimensional printing (3DP) applications possess substantial versatility within surgical applications, such as complex reconstructive surgeries and for the use of surgical resection guides. The capability of constructing an implant from a series of radiographic images to provide personalized anatomical fit is what makes 3D printed implants most appealing to surgeons. Our objective is to describe the process of integration of 3DP implants into the operating room for spinal surgery, summarize the outcomes of using 3DP implants in spinal surgery, and discuss the limitations and safety concerns during pre-operative consideration. 3DP allows for customized, light weight, and geometrically complex functional implants in spinal surgery in cases of decompression, tumor, and fusion. However, there are limitations such as the cost of the technology which is prohibitive to many hospitals. The novelty of this approach implies that the quantity of longitudinal studies is limited and our understanding of how the human body responds long term to these implants is still unclear. Although it has given surgeons the ability to improve outcomes, surgical strategies, and patient recovery, there is a need for prospective studies to follow the safety and efficacy of the usage of 3D printed implants in spine surgery.
Keywords
3D printed; Spinal implants; Spine surgery; Innovation; Biologics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, et al. : Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery 159 : 1485-1500, 2016   DOI
2 Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE 3rd, Phan K : The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg Spine 26 : 513-518, 2017   DOI
3 Mobbs RJ, Parr WCH, Choy WJ, McEvoy A, Walsh WR, Phan K : Anterior lumbar interbody fusion using a personalized approach : is custom the future of implants for anterior lumbar interbody fusion surgery? World Neurosurg 124 : 452-458.e1, 2019   DOI
4 Autodesk Inc. : Meshmixer. Available at : https://www.autodesk.com/research/projects/meshmixer?us_oa=dotcom-us&us_si=750abd7ee5de-4fbe-bc5b-1174514b7afe&us_st=Meshmixer
5 Provaggi E, Leong JJH, Kalaskar DM : Applications of 3D printing in the management of severe spinal conditions. Proc Inst Mech Eng H 231 : 471-486, 2017   DOI
6 Lu T, Liu C, Yang B, Liu J, Zhang F, Wang D, et al. : Single-level anterior cervical corpectomy and fusion using a new 3D-printed anatomy-adaptive titanium mesh cage for treatment of cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: a retrospective case series study. Med Sci Monit 23 : 3105-3114, 2017   DOI
7 Kim D, Lim JY, Shim KW, Han JW, Yi S, Yoon DH, et al. : Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Yonsei Med J 58 : 453-457, 2017   DOI
8 Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L : 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci 16 : 15118-15135, 2015   DOI
9 Materialise : Always There. Empowering your 3D printing applications. Available at : https://www.materialise.com/
10 Popov VV Jr, Muller-Kamskii G, Kovalevsky A, Dzhenzhera G, Strokin E, Kolomiets A, et al. : Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett 8 : 337-344, 2018   DOI
11 Spetzger U, Frasca M, Konig SA : Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data. Eur Spine J 25 : 2239-2246, 2016   DOI
12 Ling Q, He E, Ouyang H, Guo J, Yin Z, Huang W : Design of mulitlevel OLF approach ("V"-shaped decompressive laminoplasty) based on 3D printing technology. Eur Spine J 27(Suppl 3) : 323-329, 2018   DOI
13 Pucci JU, Christophe BR, Sisti JA, Connolly ES Jr : Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv 35 : 521-529, 2017   DOI
14 Roopavath UK, Kalaskar DM : Introduction to 3D printing in medicine in Kalaskar DM (ed) : 3D Printing in Medicine, ed 1. Woodhead Publishing : Cambridge, 2017, pp1-20
15 Sigmund O : Topology optimization: a tool for the tailoring of structures and materials. Philos Trans R Soc Lond A 358 : 211-227, 2000   DOI
16 Siu TL, Rogers JM, Lin K, Thompson R, Owbridge M : Custom-made titanium 3-dimensional printed interbody cages for treatment of osteoporotic fracture-related spinal deformity. World Neurosurg 111 : 1-5, 2018   DOI
17 Thayaparan GK, Owbridge MG, Thompson RG, D'Urso PS : Designing patient-specific 3D printed devices for posterior atlantoaxial transarticular fixation surgery. J Clin Neurosci 56 : 192-198, 2018   DOI
18 Mokawem M, Katzouraki G, Harman CL, Lee R : Lumbar interbody fusion rates with 3D-printed lamellar titanium cages using a silicate-substituted calcium phosphate bone graft. J Clin Neurosci 68 : 134-139, 2019   DOI
19 Tetsworth K, Block S, Glatt V : Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects. SICOT J 3 : 16, 2017   DOI
20 Lin HM, Liu CL, Pan YN, Huang CH, Shih SL, Wei SH, et al. : Biomechanical analysis and design of a dynamic spinal fixator using topology optimization: a finite element analysis. Med Biol Eng Comput 52 : 499-508, 2014   DOI
21 Xiao JR, Huang WD, Yang XH, Yan WJ, Song DW, Wei HF, et al. : En bloc resection of primary malignant bone tumor in the cervical spine based on 3-dimensional printing technology. Orthop Surg 8 : 171-178, 2016   DOI
22 Wilcox B, Mobbs RJ, Wu AM, Phan K : Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg 3 : 433-443, 2017   DOI
23 Tu Q, Ding HW, Chen H, Miao QJ, Yang X, Li K, et al. : Three-dimensional-printed individualized guiding templates for surgical correction of severe kyphoscoliosis secondary to ankylosing spondylitis: outcomes of 9 cases. World Neurosurg 130 : e961-e970, 2019   DOI
24 Wei R, Guo W, Ji T, Zhang Y, Liang H : One-step reconstruction with a 3D-printed, custom-made prosthesis after total en bloc sacrectomy: a technical note. Eur Spine J 26 : 1902-1909, 2017   DOI
25 Whitaker M : The history of 3D printing in healthcare. The Bulletin of the Royal College of Surgeons of England 96 : 228-229, 2014   DOI
26 Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z, et al. : Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine (Phila Pa 1976) 41 : E50-E54, 2016   DOI
27 Andersson GB : Epidemiological features of chronic low-back pain. Lancet 354 : 581-585, 1999   DOI
28 Atala A, Forgacs G : Three-dimensional bioprinting in regenerative medicine: reality, hype, and future. Stem Cells Transl Med 8 : 744-745, 2019   DOI
29 Burleson J, DiPaola C : 3D printing in spine surgery in Dipaola M, Wodajo FM (eds) : 3D Printing in Orthopaedic Surgery, ed 1. Philadelphia : Elsevier, 2019, pp105-122
30 Yang M, Li C, Li Y, Zhao Y, Wei X, Zhang G, et al. : Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine (Baltimore) 94 : e582, 2015   DOI
31 Choy WJ, Parr WCH, Phan K, Walsh WR, Mobbs RJ : 3-dimensional printing for anterior cervical surgery: a review. J Spine Surg 4 : 757-769, 2018   DOI
32 Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. : 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30 : 1323-1341, 2012   DOI
33 Ahmed AK, Pennington Z, Molina CA, Xia Y, Goodwin CR, Sciubba DM : Multidisciplinary surgical planning for en bloc resection of malignant primary cervical spine tumors involving 3D-printed models and neoadjuvant therapies: report of 2 cases. J Neurosurg Spine 30 : 417-550, 2019   DOI
34 Chin BZ, Ji T, Tang X, Yang R, Guo W : Three-level lumbar en bloc spondylectomy with three-dimensional-printed vertebrae reconstruction for recurrent giant cell tumor. World Neurosurg 129 : 531-537.e1, 2019   DOI
35 Conformis : Conformis hip system. Available at : https://www.conformis.com/conformis-hip-system/
36 Garg B, Mehta N : Current status of 3D printing in spine surgery. J Clin Orthop Trauma 9 : 218-225, 2018   DOI
37 Chen CS, Shih SL : Biomechanical analysis of a new lumbar interspinous device with optimized topology. Med Biol Eng Comput 56 : 1333-1341, 2018   DOI
38 Choy WJ, Mobbs RJ, Wilcox B, Phan S, Phan K, Sutterlin CE 3rd : Reconstruction of thoracic spine using a personalized 3D-printed vertebral body in adolescent with T9 primary bone tumor. World Neurosurg 105 : 1032.e13-1032.e17, 2017   DOI
39 D'Urso PS, Askin G, Earwaker JS, Merry GS, Thompson RG, Barker TM, et al. : Spinal biomodeling. Spine (Phila Pa 1976) 24 : 1247-1251, 1999   DOI
40 Guo LX, Yin JY : Finite element analysis and design of an interspinous device using topology optimization. Med Biol Eng Comput 57 : 89-98, 2019   DOI
41 Hollister SJ : Scaffold design and manufacturing: from concept to clinic. Adv Mater 21 : 3330-3342, 2009   DOI
42 Landi A, Delfini R, Ricci A, Barbanera A, Anichini G, Brogna C : New trends in instrumentation and complex techniques in spine surgery. Biomed Res Int 2015 : 216384, 2015
43 Li X, Wang Y, Zhao Y, Liu J, Xiao S, Mao K : Multilevel 3D printing implant for reconstructing cervical spine with metastatic papillary thyroid carcinoma. Spine (Phila Pa 1976) 42 : E1326-E1330, 2017   DOI