• 제목/요약/키워드: medicago truncatula

검색결과 14건 처리시간 0.023초

Molecular Genetics of the Model Legume Medicago truncatula

  • Nam, Young-Woo
    • The Plant Pathology Journal
    • /
    • 제17권2호
    • /
    • pp.67-70
    • /
    • 2001
  • Medicago truncatula is a diploid legume plant related to the forage crop alfalfa. Recently, it has been chosen as a model species for genomic studies due to its small genome, self-fertility, short generation time, and high transformation efficiency. M. truncatula engages in symbiosis with nitrogen-fixing soil bacterium Rhizobium meliloti. M. truncatula mutants that are defective in nodulation and developmental processes have been generated. Some of these mutants exhibited altered phenotypes in symbiotic responses such as root hair deformation, expression of nodulin genes, and calcium spiking. Thus, the genes controlling these traits are likely to encode functions that are required for Nod-factor signal transduction pathways. To facilitate genome analysis and map-based cloning of symbiotic genes, a bacterial artificial chromosome library was constructed. An efficient polymerase chain reaction-based screening of the library was devised to fasten physical mapping of specific genomic regions. As a genomics approach, comparative mapping revealed high levels of macro- and microsynteny between M. truncatula and other legume genomes. Expressed sequence tags and microarray profiles reflecting the genetic and biochemical events associated with the development and environmental interactions of M. truncatula are assembled in the databases. Together, these genomics programs will help enrich our understanding of the legume biology.

  • PDF

Transformation of Medicago truncatula with rip1-GUS Gene

  • Nam Young-Woo;Song Dae-Hae
    • 한국작물학회지
    • /
    • 제49권5호
    • /
    • pp.434-439
    • /
    • 2004
  • Medicago truncatula is a model plant for molecular genetic studies of legumes and plant-microbe interactions. To accelerate finding of genes that play roles in the early stages of nodulation and stress responses, a trans-genic plant was developed that contains a promoter­reporter fusion. The promoter of rip], a Rhizobium-induced peroxidase gene, was fused to the coding region of $\beta-glucuronidase (GUS)$ gene and inserted into a modified plant transformation vector, pSLJ525YN, in which the bar gene was preserved from the original plasmid but the neomycin phosphotransferase gene was replaced by a polylinker. Transformation of M. truncatula was carried out by vacuum infiltration of young seedlings with Agrobacterium. Despite low survival rates of infiltrated seedlings, three independent transformants were obtained from repeated experiments. Southern blot analyses revealed that 7 of 8 transgenic plants of the T 1 generation contained the bar gene whereas 6 $T_1$ plants contained the GUS gene. These results indicate that vacuum infiltration is an effective method for transformation of M. truncatula. The progeny seeds of the transgenic plants will be useful for mutagenesis and identification of genes that are placed upstream and may influence the expression of rip] in cellular signaling processes including nodulation.

Construction of a Bacterial Artificial Chromosome Library Containing Large BamHI Genomic Fragments from Medicago truncatula and Identification of Clones Linked to Hypernodulating Genes

  • Park So-Yeon;Nam Young-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.256-263
    • /
    • 2006
  • In the model legume Medicago truncatula, two mutants, sickle and sunn, exhibit morphologically and genetically distinct hypernodulation phenotypes. However, efforts to isolate the single recessive and single semidominant genes for sickle and sunn, respectively, by map-based cloning have so far been unsuccessful, partly due to the absence of clones that enable walks from linked marker positions. To help resolve these difficulties, a new bacterial artificial chromosome (BAC) library was constructed using BamHI-digested genomic fragments. A total of 23,808 clones were collected from ligation mixtures prepared with double-size-selected high-molecular-weight DNA. The average insert size was 116 kb based on an analysis of 88 randomly selected clones using NotI digestion and pulsed-field gel electrophoresis. About 18.5% of the library clones lacked inserts. The frequency of the BAC clones carrying chloroplast or mitochondrial DNA was 0.98% and 0.03%, respectively. The library represented approximately 4.9 haploid M. truncatula genomes. Hybridization of the BAC clone filters with a $C_{0}t-l$ DNA probe revealed that approximately 37% of the clones likely carried repetitive sequence-enriched DNA. An ordered array of pooled BAC DNA was screened by polymerase chain reactions using 13 sequence-characterized molecular markers that belonged to the eight linkage groups. Except for two markers, one to five positive BAC clones were obtained per marker. Accordingly, the sickle- and sunn-linked BAC clones identified herein will be useful for the isolation of these biotechnologically important genes. The new library will also provide clones that fill the gaps between preexisting BAC contigs, facilitating the physical mapping and genome sequencing of M. truncatula.

MtMKK5 inhibits nitrogen-fixing nodule development by enhancing defense signaling

  • Hojin Ryu
    • Journal of Plant Biotechnology
    • /
    • 제49권4호
    • /
    • pp.300-306
    • /
    • 2022
  • The mitogen-activated protein kinase (MAPK) signaling cascade is essential for a wide range of cellular responses in plants, including defense responses, responses to abiotic stress, hormone signaling, and developmental processes. Recent investigations have shown that the stress, ethylene, and MAPK signaling pathways negatively affect the formation of nitrogen-fixing nodules by directly modulating the symbiotic signaling components. However, the molecular mechanisms underlying the defense responses mediated by MAPK signaling in the organogenesis of nitrogen-fixing nodules remain unclear. In the present study, I demonstrate that the Medicago truncatula mitogen-activated protein kinase kinase 5 (MtMKK5)-Medicago truncatula mitogen-activated protein kinase 3/6 (MtMPK3/6) signaling module, expressed specifically in the symbiotic nodules, promotes defense signaling, but not ethylene signaling pathways, thereby inhibiting nodule development in M. truncatula. U0126 treatment resulted in increased cell division in the nodule meristem zone due to the inhibition of MAPK signaling. The phosphorylated TEY motif in the activation domain of MtMPK3/6 was the target domain associated with specific interactions with MtMKK5. I have confirmed the physical interactions between M. truncatula nodule inception (MtNIN) and MtMPK3/6. In the presence of high expression levels of the defense-related genes FRK1 and WRKY29, MtMKK5a overexpression significantly enhanced the defense responses of Arabidopsis against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Overall, my data show that the negative regulation of symbiotic nitrogen-fixing nodule organogenesis by defense signaling pathways is mediated by the MtMKK5-MtMPK3/6 module.

Medicago truncatula in Interaction with Fusarium and Rhizoctonia Phytopathogenic Fungi: Fungal Aggressiveness, Plant Response Biodiversity and Character Heritability Indices

  • Batnini, Marwa;Haddoudi, Imen;Taamali, Wael;Djebali, Naceur;Badri, Mounawer;Mrabet, Moncef;Mhadhbi, Haythem
    • The Plant Pathology Journal
    • /
    • 제37권4호
    • /
    • pp.315-328
    • /
    • 2021
  • Fusarium and Rhizoctonia genera are important pathogens of many field crops worldwide. They are constantly evolving and expanding their host range. Selecting resistant cultivars is an effective strategy to break their infection cycles. To this end, we screened a collection of Medicago truncatula accessions against Fusarium oxysporum, Fusarium solani, and Rhizoctonia solani strains isolated from different plant species. Despite the small collection, a biodiversity in the disease response of M. truncatula accessions ranging from resistant phenotypes to highly susceptible ones was observed. A17 showed relative resistance to all fungal strains with the lowest disease incidence and ratings while TN1.11 was among the susceptible accessions. As an initiation of the characterization of resistance mechanisms, the antioxidant enzymes' activities, at the early stages of infections, were compared between these contrasting accessions. Our results showed an increment of the antioxidant activities within A17 plants in leaves and roots. We also analyzed the responses of a population of recombinant inbred lines derived from the crossing of A17 and TN1.11 to the infection with the same fungal strains. The broad-sense heritability of measured traits ranged from 0.87 to 0.95, from 0.72 to 0.96, and from 0.14 to 0.85 under control, F. oxysporum, and R. solani conditions, respectively. This high estimated heritability underlines the importance of further molecular analysis of the observed resistance to identify selection markers that could be incorporated into a breeding program and thus improving soil-borne pathogens resistance in crops.

Variability in Responses to Phoma medicaginis Infection in a Tunisian Collection of Three Annual Medicago Species

  • Mounawer Badri;Amina Ayadi;Asma Mahjoub;Amani Benltoufa;Manel Chaouachi;Rania Ranouch;Najah Ben Cheikh;Aissa Abdelguerfi;Meriem Laouar;Chedly Abdelly;Ndiko Ludidi;Naceur Djebali
    • The Plant Pathology Journal
    • /
    • 제39권2호
    • /
    • pp.171-180
    • /
    • 2023
  • Spring black stem and leaf spot, caused by Phoma medicaginis, is an issue in annual Medicago species. Therefore, in this study, we analyzed the response to P. medicaginis infection in a collection of 46 lines of three annual Medicago species (M. truncatula, M. ciliaris, and M. polymorpha) showing different geographic distribution in Tunisia. The reaction in the host to the disease is explained by the effects based on plant species, lines nested within species, treatment, the interaction of species × treatment, and the interaction of lines nested within species × treatment. Medicago ciliaris was the least affected for aerial growth under infection. Furthermore, the largest variation within species was found for M. truncatula under both conditions. Principal component analysis and hierarchical classification showed that M. ciliaris lines formed a separate group under control treatment and P. medicaginis infection and they are the most vigorous in growth. These results indicate that M. ciliaris is the least susceptible in response to P. medicaginis infection among the three Medicago species investigated here, which can be used as a good candidate in crop rotation to reduce disease pressure in the field and as a source of P. medicaginis resistance for the improvement of forage legumes.

Modification of cell wall structural carbohydrate in the hybrid poplar expressing Medicago R2R3-MYB transcription factor MtMYB70

  • Kim, Sun Hee;Choi, Young Im;Jin, Hyunjung;Shin, Soo-Jeong;Park, Jong-Sug;Kwon, Mi
    • Journal of Plant Biotechnology
    • /
    • 제42권2호
    • /
    • pp.93-103
    • /
    • 2015
  • The isolation, cloning, and characterization of an R2R3-MYB transcription factor gene (MtMYB70) from the model legume Medicago truncatula is reported. MtMYB70 consists of a 768-bp coding sequence corresponding to 255 amino acids. Sequence alignment revealed that MtMYB70 cDNA contains conserved R2R3-type MYB domains with highly divergent C terminal regions. MtMYB70 was found to have relatively low sequence homology with known R2R3-MYB genes. Phylogenetic analysis placed the R2R3-MYB domain of MtMYB70 closest to PtMYB1, a known activator of lignin biosynthesis. Overexpression of MtMYB70 under the control of the 35S promoter in transgenic poplar did not cause a significant difference in total lignin content relative to the control, but glucan content was significantly increased in transgenic poplar. Therefore, MtMYB70 might have regulatory role in the biosynthesis of cell wall structural carbohydrates.

Cloning and Characterization of ${\Delta}^1$-Pyrroline-5-Carboxylate Synthetase Genes and Identification of Point Mutants in Medicago truncatula

  • Song, Ki-Hoon;Song, Dae-Hae;Lee, Jeong-Ran;Kim, Goon-Bo;Choi, Hong-Kyu;Penmetsa, R. Varma;Nam, Young-Woo
    • 한국작물학회지
    • /
    • 제52권4호
    • /
    • pp.458-468
    • /
    • 2007
  • To tolerate environmentally adverse conditions such as cold, drought, and salinity, plants often synthesize and accumulate proline in cells as compatible osmolytes. ${\Delta}^1$-Pyrroline-5-carboxylate synthetase(P5CS) catalyzes the rate-limiting step of proline biosynthesis from glutamate. Two complete genes, MtP5CS1 and MtP5CS2, were isolated from the model legume Medicago truncatula by cDNA cloning and bacterial artificial chromosome library screening. Nucleotide sequence analysis showed that both genes consisted of 20 exons and 19 introns. Alignment of the predicted amino acid sequences revealed high similarities with P5CS proteins from other plant species. The two MtP5CS genes were expressed in response to high salt and low temperature treatments. Semi-quantitative reverse transcription-polymerase chain reaction showed that MtP5CS1 was expressed earlier than MtP5CS2, indicating differential regulation of the two genes. To evaluate the reverse genetic effects of nucleotide changes on MtP5CS function, a Targeting Induced Local Lesions in Genomes approach was taken. Three mutants each were isolated for MtP5CS1 and MtP5CS2, of which a P5CS2 nonsense mutant carrying a codon change from arginine to stop was expected to bring translation to premature termination. These provide a valuable genetic resource with which to determine the function of the P5CS genes in environmental stress responses of legume crops.