DOI QR코드

DOI QR Code

Medicago truncatula in Interaction with Fusarium and Rhizoctonia Phytopathogenic Fungi: Fungal Aggressiveness, Plant Response Biodiversity and Character Heritability Indices

  • Batnini, Marwa (Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria) ;
  • Haddoudi, Imen (Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria) ;
  • Taamali, Wael (Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cedria) ;
  • Djebali, Naceur (Laboratory of Bioactive Substances, Center of Biotechnology of Borj-Cedria) ;
  • Badri, Mounawer (Laboratory of Extremophile Plants, Center of Biotechnology of Borj-Cedria) ;
  • Mrabet, Moncef (Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria) ;
  • Mhadhbi, Haythem (Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria)
  • Received : 2021.02.04
  • Accepted : 2021.05.20
  • Published : 2021.08.01

Abstract

Fusarium and Rhizoctonia genera are important pathogens of many field crops worldwide. They are constantly evolving and expanding their host range. Selecting resistant cultivars is an effective strategy to break their infection cycles. To this end, we screened a collection of Medicago truncatula accessions against Fusarium oxysporum, Fusarium solani, and Rhizoctonia solani strains isolated from different plant species. Despite the small collection, a biodiversity in the disease response of M. truncatula accessions ranging from resistant phenotypes to highly susceptible ones was observed. A17 showed relative resistance to all fungal strains with the lowest disease incidence and ratings while TN1.11 was among the susceptible accessions. As an initiation of the characterization of resistance mechanisms, the antioxidant enzymes' activities, at the early stages of infections, were compared between these contrasting accessions. Our results showed an increment of the antioxidant activities within A17 plants in leaves and roots. We also analyzed the responses of a population of recombinant inbred lines derived from the crossing of A17 and TN1.11 to the infection with the same fungal strains. The broad-sense heritability of measured traits ranged from 0.87 to 0.95, from 0.72 to 0.96, and from 0.14 to 0.85 under control, F. oxysporum, and R. solani conditions, respectively. This high estimated heritability underlines the importance of further molecular analysis of the observed resistance to identify selection markers that could be incorporated into a breeding program and thus improving soil-borne pathogens resistance in crops.

Keywords

Acknowledgement

The author acknowledge Jamila Hammemi and Fathi Barhoumi, technicians at Laboratory of Legumes, CBBC, for their technical assistance in the procedure of the screening test. This work was supported by the [Tunisian Ministry of Higher Education and Scientific Research] in the frame of the work program of L2AD-CBBC, 2019-2022.

References

  1. Ameline-Torregrosa, C., Cazaux, M., Danesh, D., Chardon, F., Cannon, S. B., Esquerr-Tugay, M.-T., Dumas, B., Young, N. D., Samac, D. A., Huguet, T. and Jacquet, C. 2008. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Mol. Plant-Microbe Interact. 21:61-69. https://doi.org/10.1094/MPMI-21-1-0061
  2. Anderson, J. P., Gleason, C. A., Foley, R. C., Thrall, P. H., Burdon, J. B. and Singh, K. B. 2010. Plants versus pathogens: an evolutionary arms race. Funct. Plant Biol. 37:499-512. https://doi.org/10.1071/FP09304
  3. Anderson, J. P., Hane, J. K., Stoll, T., Pain, N., Hastie, M. L., Kaur, P., Hoogland, C., Gorman, J. J. and Singh, K. B. 2016. Proteomic analysis of Rhizoctonia solani identifies infectionspecific, redox associated proteins and insight into adaptation to different plant hosts. Mol. Cell. Proteomics 15:1188-1203. https://doi.org/10.1074/mcp.M115.054502
  4. Anderson, J. P., Lichtenzveig, J., Oliver, R. P. and Singh, K. B. 2013. Medicago truncatula as a model host for studying legume infecting Rhizoctonia solani and identification of a locus affecting resistance to root canker. Plant Pathol. 62:908-921. https://doi.org/10.1111/j.1365-3059.2012.02694.x
  5. Anderson, M. D., Prasad, T. K. and Stewart, C. R. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109:1247-1257. https://doi.org/10.1104/pp.109.4.1247
  6. An, J.-M., Levy, J., Thoquet, P., Kulikova, O., de Billy, F., Penmetsa, V., Kim, D.-J., Debell, F., Rosenberg, C., Cook, D. R., Bisseling, T., Huguet, T. and Denari, J. 2002. Genetic and cytogenetic mapping of DMI1, DMI2, and DMI3 genes of Medicago truncatula involved in Nod factor transduction, nodulation, and mycorrhization. Mol. Plant-Microbe Interact. 15:1108-1118. https://doi.org/10.1094/MPMI.2002.15.11.1108
  7. Arraouadi, S., Badri, M., Jaleel, C. A., Djebali, N., Ilahi, H., Huguet, T. and Aouan, M. E. 2009. Analysis of genetic variation in natural populations of Medicago truncatula of Southern Tunisian ecological areas, using morphological traits and SSR Markers. Trop. Plant Biol. 2:122-132. https://doi.org/10.1007/s12042-009-9034-5
  8. Arraouadi, S., Badri, M., Zitoun, A., Huguet, T. and Aouani, M. E. 2011. Analysis of NaCl stress response in Tunisian and reference lines of Medicago truncatula. Russ. J. Plant Physiol. 58:316-323. https://doi.org/10.1134/S1021443711020026
  9. Bani, M., Rubiales, D. and Rispail, N. 2012. A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol. 61:532-542. https://doi.org/10.1111/j.1365-3059.2011.02537.x
  10. Becard, G. and Fortin, J. A. 1988. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108:211-218. https://doi.org/10.1111/j.1469-8137.1988.tb03698.x
  11. Belete, E., Ayalew, A. and Ahmed, S. 2013. Associations of biophysical factors with faba bean root rot (Fusarium solani) epidemics in the northeastern highlands of Ethiopia. Crop Prot. 52:39-46. https://doi.org/10.1016/j.cropro.2013.05.003
  12. Ben, C., Toueni, M., Montanari, S., Tardin, M.-C., Fervel, M., Negahi, A., Saint-Pierre, L., Mathieu, G., Gras, M.-C., Noel, D., Prosperi, J.-M., Pilet-Nayel, M.-L., Baranger, A., Huguet, T., Julier, B., Rickauer, M. and Gentzbittel, L. 2013. Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt. J. Exp. Bot. 64:317-332. https://doi.org/10.1093/jxb/ers337
  13. Boughalleb, N. and Mahjoub, M. E. 2006. Fusarium solani f.sp. cucurbitae and F. oxysporum f.sp. niveum inoculum densities in tunisian soils and their effect on watermelon seedlings. Phytoparasitica 34:149-158. https://doi.org/10.1007/BF02981315
  14. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  15. Camejo, D., Guzman-Cedeno, A. and Moreno, A. 2016. Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol. Biochem. 103:10-23. https://doi.org/10.1016/j.plaphy.2016.02.035
  16. Cook, D. R. 1999. Medicago truncatula: a model in the making! Curr. Opin. Plant Biol. 2:301-304. https://doi.org/10.1016/S1369-5266(99)80053-3
  17. Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J. and Roncero, M. I. G. 2003. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol. Plant Pathol. 4:315-325. https://doi.org/10.1046/j.1364-3703.2003.00180.x
  18. Djebali, N., Elkahoui, S., Taamalli, W., Hessini, K., Tarhouni, B. and Mrabet, M. 2014. Tunisian Rhizoctonia solani AG3 strains affect potato shoot macronutrients content, infect faba bean plants and show in vitro resistance to azoxystrobin. Australas. Plant Pathol. 43:347-358. https://doi.org/10.1007/s13313-014-0277-8
  19. Djebali, N., Jauneau, A., Ameline-Torregrosa, C., Chardon, F., Jaulneau, V., Math, C., Bottin, A., Cazaux, M., Pilet-Nayel, M.-L., Baranger, A., Aouani, M. E., Esquerr-Tugay, M.-T., Dumas, B., Huguet, T. and Jacquet, C. 2009. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Mol. PlantMicrobe Interact. 22:1043-1055. https://doi.org/10.1094/MPMI-22-9-1043
  20. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S. M. A. 2009. Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture, eds. by E. Lichtfouse, M. Navarrete, P. Debaeke, S. Veronique and C. Alberola, pp. 153-188. Springer, Dordrecht, Germany.
  21. Garcia-Limones, C., Hervas, A., Navas-Cortes, J. A., JimenezDiaz, R. M. and Tena, M. 2002. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiol. Mol. Plant Pathol. 61:325-337. https://doi.org/10.1006/pmpp.2003.0445
  22. Gay, P. A. and Tuzun, S. 2000. Temporal and spatial assessment of defense responses in resistant and susceptible cabbage varieties during infection with Xanthomonas campestris pv. campestris. Physiol. Mol. Plant Pathol. 57:201-210. https://doi.org/10.1006/pmpp.2000.0299
  23. Graham, P. H. and Vance, C. P. 2003. Legumes: importance and constraints to greater use. Plant Physiol. 131:872-877. https://doi.org/10.1104/pp.017004
  24. Haddoudi, I., Mhadhbi, H., Gargouri, M., Barhoumi, F., Romdhane, S. B. and Mrabet, M. 2021. Occurrence of fungal diseases in faba bean (Vicia faba L.) under salt and drought stress. Eur. J. Plant Pathol. 159:385-398. https://doi.org/10.1007/s10658-020-02169-5
  25. Jedidi, I., Soldevilla, C., Lahouar, A., Marin, P., Gonzalez-Jaen, M. T. and Said, S. 2018. Mycoflora isolation and molecular characterization of Aspergillus and Fusarium species in Tunisian cereals. Saudi J. Biol. Sci. 25:868-874. https://doi.org/10.1016/j.sjbs.2017.11.050
  26. Landa, B. B., Navas-Cortes, J. A. and Jimenez-Diaz, R. M. 2004. Integrated management of Fusarium wilt of chickpea with sowing date, host resistance, and biological control. Phytopathology 94:946-960. https://doi.org/10.1094/PHYTO.2004.94.9.946
  27. Lazrek, F., Roussel, V., Ronfort, J., Cardinet, G., Chardon, F., Aouani, M. E. and Huguet, T. 2009. The use of neutral and non-neutral SSRs to analyse the genetic structure of a Tunisian collection of Medicago truncatula lines and to reveal associations with eco-environmental variables. Genetica 135:391. https://doi.org/10.1007/s10709-008-9285-3
  28. Marburger, D. A., Venkateshwaran, M., Conley, S. P., Esker, P. D., Lauer, J. G. and An, J.-M. 2015. Crop Rotation and management effect on Fusarium spp. populations. Crop Prot. 55:365-376.
  29. Park, R. F. 2008. Breeding cereals for rust resistance in Australia. Plant Pathol. 57:591-602. https://doi.org/10.1111/j.1365-3059.2008.01836.x
  30. Peters, R. D., Sturz, A. V, Carter, M. R. and Sanderson, J. B. 2004. Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Can. J. Soil Sci. 84:397-402. https://doi.org/10.4141/S03-060
  31. Prats, E., Llamas, M. J. and Rubiales, D. 2007. Characterization of resistance mechanisms to Erysiphe pisi in Medicago truncatula. Phytopathology 97:1049-1053. https://doi.org/10.1094/PHYTO-97-9-1049
  32. Ramirez-Suero, M., Khanshour, A., Martinez, Y. and Rickauer, M. 2010. A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum. Eur. J. Plant Pathol. 126:517-530. https://doi.org/10.1007/s10658-009-9560-x
  33. Rispail, N., Bani, M. and Rubiales, D. 2015. Resistance reaction of Medicago truncatula genotypes to Fusarium oxysporum: effect of plant age, substrate and inoculation method. Crop Pasture Sci. 66:506-515. https://doi.org/10.1071/CP14216
  34. Rispail, N., Kal, P., Kiss, G. B., Ellis, T. H. N., Gallardo, K., Thompson, R. D., Prats, E., Larrainzar, E., Ladrere, R., Gonzalez, E. M., Arrese-Igor, C., Ferguson, B. J., Gresshoff, P. M. and Rubiales, D. 2010. Model legumes contribute to faba bean breeding. Field Crops Res. 115:253-269. https://doi.org/10.1016/j.fcr.2009.03.014
  35. Rispail, N. and Rubiales, D. 2014. Identification of sources of quantitative resistance to Fusarium oxysporum f. sp. medicaginis in Medicago truncatula. Plant Dis. 98:667-673. https://doi.org/10.1094/PDIS-03-13-0217-RE
  36. Samet, M., Charfeddine, M., Kamoun, L., Nouri-Ellouze, O. and Gargouri-Bouzid, R. 2018. Effect of compost tea containing phosphogypsum on potato plant growth and protection against Fusarium solani infection. Environ. Sci. Pollut. Res. 25:18921-18937. https://doi.org/10.1007/s11356-018-1960-z
  37. Stagnari, F., Maggio, A., Galieni, A. and Pisante, M. 2017. Multiple benefits of legumes for agriculture sustainability: an overview. Chem. Biol. Technol. Agric. 4:2. https://doi.org/10.1186/s40538-016-0085-1
  38. Trabelsi, D., Ben Ammar, H., Mengoni, A. and Mhamdi, R. 2012. Appraisal of the crop-rotation effect of rhizobial inoculation on potato cropping systems in relation to soil bacterial communities. Soil Biol. Biochem. 54:1-6. https://doi.org/10.1016/j.soilbio.2012.05.013
  39. Tuncer, S. and Eken, C. 2013. Anastomosis grouping of Rhizoctonia solani and binucleate Rhizoctonia spp. isolated from pepper in Erzincan, Turkey. Plant Prot. Sci. 49:127-131. https://doi.org/10.17221/77/2012-PPS
  40. Vailleau, F., Sartorel, E., Jardinaud, M.-F., Chardon, F., Genin, S., Huguet, T., Gentzbittel, L. and Petitprez, M. 2007. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula. Mol. Plant-Microbe Interact. 20:159-167. https://doi.org/10.1094/MPMI-20-2-0159
  41. Yang, S., Gao, M., Xu, C., Gao, J., Deshpande, S., Lin, S., Roe, B. A. and Zhu, H. 2008. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broadspectrum resistance to anthracnose in alfalfa. Proc. Natl. Acad. Sci. U. S. A. 105:12164-12169. https://doi.org/10.1073/pnas.0802518105
  42. Yu, Q. and Rengel, Z. 1999. Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins. Ann. Bot. 83:175-182. https://doi.org/10.1006/anbo.1998.0811