• Title/Summary/Keyword: mechatronics industry

Search Result 210, Processing Time 0.044 seconds

Magneto-Mechatronics : A New Approach to Sensors and Actuators for Next-Generation Biomedical and Rehabilitation Devices (자기 메카트로닉스 : 차세대 의공학 및 재활 기기 개발을 위한 센서와 액추에이터의 새로운 접근방법)

  • Yu, Chang Ho;Kim, Sung Hoon
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Magnetic sensors and actuators have been widely used in industry and medical fields. Integrated systems based on sensors and actuators are defined as mechatronics that is the general combination of mechanics and electronics. Recently, magnetic wireless sensors and actuators have been developed and used at a systematic level. In particular, their mechanisms depend on magnetic, such as magnetic material and physical phenomena. However, their research boundary has not been clear. Researchers talk of magnetic micro-robots, magnetic actuators and sensors. Therefore, a new and correct definition is required. In this study, we introduce the advanced and extended concept of mechatronics, which is a magneto-mechantronics for biomedical and rehabilitation. Among various applications, we focused on wireless pump and sensing system for blood vessel rehabilitation and local motion capture, respectively.

Formation Mechanism Analysis and Detection of Charged Particles in an Aero-engine Gas Path

  • Wen, Zhenhua;Hou, Junxing;Jiang, ZhiQiang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.247-253
    • /
    • 2015
  • The components of an aero-engine gas path cannot be monitored in a timely way due to a lack of real-time monitoring technologies. As an attempt to address this problem, we have conducted research on a condition monitoring technology based on the charging characteristics of particles in an aero-engine gas path, and emphatically analyze the formation of particles in an aero-engine gas path, the charging mechanism of carbon particles and the factors that influence the charge quantity and polarity. The verification experiments are performed on the simulated experiment platform and a turbo-shaft engine test bench. The results show the carbon particles' carry charge, and an obvious change in the total electrostatic charge level in the aero-engine gas path due to the increased carbon particles produced by burning or abnormal metal particles; the charge number is related to the size of particles, and the bigger carbon particles carry a negative charge and metal particles carry a positive charge; the change in engine power can lead to an obvious change in the level of electrostatic charge in the gas path, and the change in electrostatic charge results from the extra carbon particles formed in the rich-oil burning process. The research provides a reference for establishing the baseline of electrostatic charge while the engine runs on different power. The study also demonstrates the validity of the electrostatic monitoring technology and establishes a base for developing the application of electrostatic monitoring technology in aero-engines.

A study on the Alternatives for Acquiring the Competitiveness of the Marine Equipment Industry (조선기자재 산업의 경쟁력 확보방안에 관한 연구)

  • Kim, Yun-Hyung;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.801-808
    • /
    • 2006
  • To create the value-added in the field of the shipbuilding, we have to vitalize the marine equipment industry. However the competitiveness is inclined to its outward than inward in the field of the shipbuilding in our country. Especially the field of the marine equipment industry needs to acquire the competitiveness as soon as possible in comparison with an advanced country. Therefore, this paper analyzes the characteristics of the marine equipment, the present situation of the marine equipment industry, the present situation of the demand-supply, the localization of the marine equipment, so that it can raise the competitiveness of the marine equipment industry. Based on this paper, it is the purpose of this paper to derive the alternative for acquiring the competitiveness. This paper is trying to find the way to progress the marine equipment industry and suggest well-founded data for acquiring the competitiveness.

High speed Control of Robot Manipulator using Time Delay Control and Time Delay Observer (시간지연제어기와 관측기를 사용한 로봇의 고속제어)

  • Lee, Jeong-Wan;Kang, Shin-You
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.187-192
    • /
    • 2004
  • 본 논문에서는 시간지연 제어기와 관측기를 사용하여 산업용 로봇을 위한 고속 제어 방법을 설계하였다. 설계된 방법은 로봇의 매개변수 변화나 비선형이 존재하는 상황에서도 강인한 제어성능을 보이게끔 개발되었으며, 실제구현을 하였을 때도 계산량이 적으면서 동시에 구현이 쉬운 방법이다. 평면 2 자유도 스카라 로봇의 적용을 통하여 실험을 하였는데, 그 결과 실제 시스템에 효과적으로 적용될 수 있음 확인하였다.

  • PDF

A Study on the Reverse Engineering and Wear Analysis for Remanufacturing Planner Miller (플래너 밀러 재제조를 위한 역설계 및 마모 분석에 관한 연구)

  • Choi, Doo-Han;Kong, Seok-Hwan;Byeon, Jeong-Won;Kim, Tae-Woo;Hong, Dae-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1103-1110
    • /
    • 2022
  • The old machine tools that have been used for a long time cause both increase in defective rate and decrease in productivity compared to new machines due to wear and failure of their components. In order to improve productivity and quality of machined components through remanufacturing, it is necessary to analyze the wear and failure of major components of old machine tools. In this study, the process for reverse engineering is designed for the remanufacture of planner millers, which belong to a very large machine tool. Also, the suitability of the designed process is verified through the analysis of the selected remanufactured components. In the first step of the process, some major components of the aging planner miller are scanned using a 3D laser scanner. In the next step, reverse engineering is performed using the data obtained through 3D scanning. Finally, wear and failure analysis is performed by comparing the reverse engineering data with the scan data. As a result, this reverse design and wear analysis can complement the insufficient design database and reduce costs in the maintenance of remanufactured products.

A Study on The Design and Structural Strength of L-Type Davit with Electric Cylinder Type Actuator for Offshore Plant and Ship (해양플랜트·선박용 전기실린더형 액추에이터를 탑재한 L타입 데빗의 설계 및 구조강도에 관한 연구)

  • Young-Hun Kim;Da-Seoung Kwak;Ki-Hyun Park;Jae-Rin Shim;Yong-Won Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.175-181
    • /
    • 2023
  • In offshore plants, various equipments including cranes and davits are used for safety management. Hydraulic cylinder type actuators are mainly used for luffing operations such as cranes and davits. However, in the case of a cylinder using hydraulic pressure, a separate power pack is required to supply hydraulic pressure. When used for a long time, maintenance costs such as sticking of hydraulic valves, contamination of hydraulic oil and deterioration of hydraulic hoses occur. In addition, a lot of hydraulic oil is used in the handling of cranes and davits, which causes marine pollution due to management problems. As a result, as interest in marine pollution prevention has increased recently, interest in actuators that do not use hydraulic pressure is also increasing. Therefore, in this study, we intend to develop a davit with an electric cylinder type actuator that uses electricity rather than hydraulic pressure by the SOLAS regulation. In other words, the conceptual design of the davit driven through the linear motion of the ball screw using electricity is performed, and the structural safety of the drive is also reviewed so that it can be utilized in the industrial field.

The development of automatic optical aligner with using the image processing (Image Processing을 이용한 자동 광 정렬 장치 개발)

  • Um, Chul;Kim, Byung-Hee;Kim, Sung-Geun;Choi, Young-Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.536-539
    • /
    • 2002
  • In this paper, we developed the automatic optical fiber aligner by image processing and automatic loading system. Optical fiber is indispensable for optical communication systems that transmit large volumes of data at high speed, but super-precision technology in sub-micron units is required for optical axis adjustment, we have developed 6-axis micro stage system for I/O optical fiber arrays, the initial automatic aligning system/software for a input optical array by the image processing technique, fast I/O-synchronous aligning strategy, the automatic loading/unloading system and the automatic UV bonding mechanism. In order to adjust the alignment it used on PC based motion controller, a $10\mu\textrm{mm}$ repeat-detailed drawing of automatic loading system is developed by a primary line up for high detailed drawing. Also, at this researches used the image processing system and algorithm instead of the existing a primary hand-line up. and fiber input array and waveguide chip formed in line by automatic. Therefore, the developed and manufactured optical aligning system in this research fulfills the great role of support industry for major electronics manufacturers, telecommunications companies, universities, government agencies and other research institutions.

  • PDF

Study on the Gas-Liquid Mixing Characteristics in Reactor System Using Ejector

  • Jin, Zhen-Hua;Utomo, Tony;Chung, Han-Shik;Jeong, Hyo-Min;Shin, You-Sik;Lee, Sang-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2708-2713
    • /
    • 2007
  • The aim of this paper is further studies to achieve deeper understanding in this field. First investigate the influence of operating conditions and design parameters on the hydrodynamics and the mass transfer properties of a loop reactor. This paper provides a literature review on the ejectors applications in the mixing system. A number of studies are grouped and discussed in several topics such as the background, theory of ejector, mixing characteristics, optimization of the system. Since the high efficiencies reactor using ejector widely used in gas-liquid system, especially in a number of chemical and biochemical processes. This is due to their high efficiency in gas dispersion resulting in high mass transfer rate and low power requirements. Thus ejector has been applied to the mixing system. An investigation on hydrodynamics and mass transfer characteristics of gas-liquid ejector has been carried out using three-dimensional CFD modeling.

  • PDF

Optimal Cutting Condition of Rough Cutting Using Trochoidal Motion (Trochoidal 방식을 이용한 황삭가공의 최적조건)

  • Bong, Ha Yoon;Kim, Moon Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • In modern industry, the machining process is very important for manufacturing various products. More than 80% of machining processes apply rough cutting. The target of this study is to establish the optimal condition of rough cutting using trochoidal motion for improving productivity. For research, the range of cutting conditions is defined by trochoidal motion. The cutting time and tolerance are measured and evaluated according to the cutting conditions of machining. Experimental data are utilized for comparing trochoidal motion and contouring. It is found that the cutting time of trochoidal motion is two times less than that of contouring with optimal cutting conditions. To conclude, trochoidal motion for rough cutting under appropriate cutting conditions improves productivity and shortens processing time significantly.

An Improved Input Shaping Method for Precise Stopping and Residual Vibration Reduction of Cranes (크레인의 정밀한 정지와 잔류진동 억제를 위한 개선된 입력 성형기법)

  • Bae, Gyu-Hyun;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.717-724
    • /
    • 2013
  • Industrial cranes are indispensable equipment in heavy industry. However, unwanted vibrations in cranes often cause accidents. Input shaping is widely accepted as a useful tool for removing residual vibration in cranes. A unity magnitude zero vibration (UMZV) input shaper is often used for cranes driven by on-off-type motors. However, although a UMZV input shaper minimizes residual vibration, the input shaper cannot prevent the crane from moving slightly further than expected from the original command. This paper describes an improved method of input shaping that can compensate for position inaccuracies, as well as remove the residual vibration of cranes. Experiments were performed to validate the proposed input-shaping method, illustrated through numerical simulations.