• Title/Summary/Keyword: mechanochemical reaction

Search Result 32, Processing Time 0.033 seconds

Mechanochemical Approach for Oxide Reduction of Spent Nuclear Fuels for Pyroprocessing

  • Kim, Sung-Wook;Han, Seung Youb;Jang, Junhyuk;Jeon, Min Ku;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.255-266
    • /
    • 2021
  • Solid-state mechanochemical reduction combined with subsequent melting consolidation was suggested as a technical option for the oxide reduction in pyroprocessing. Ni ingot was produced from NiO as a starting material through this technique while Li metal was used as a reducing agent. To determine the technical feasibility of this approach for pyroprocessing, which handles spent nuclear fuels, thermodynamic calculations of the phase stabilities of various metal oxides of U and other fission elements were made when several alkaline and alkali-earth metals were used as reducing agents. This technique is expected to be beneficial, not only for oxide reduction but also for other unit processes involved in pyroprocessing.

Water Leaching of Tungsten and Vanadium through Mechanochemical Reaction of Their Oxides and Alkali-Compounds (알칼리화합물과 텅스텐/바나듐산화물의 기계화학반응을 이용한 수 침출 연구)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • Water leaching of tungsten(W) and vanadium(V) was researched from their oxides through mechanochemical (MC) reaction with alkali compounds. Intensive grinding for the mixture of tungsten/vanadium oxide and alkali compounds (NaOH, $Na2CO_3$) was carried out with change of their mixing ratios and grinding duration. Water soluble compounds, $Na_2WO_4$ and $NaVO_3$, were synthesized through MC reaction and their solubilities increased in proportion to the mixing ratio of sodium compound and grinding times. Whereas vanadium leachability was less affected by the mixting ratio and grinding times. The leachabilities of 99.0% were accomplished by a short period of MC treatment, W (30 min.) and V (5 min.). This process enable us to extract W and V from their oxides via a water leaching, and can be applied to the selective recovery of W and V from $DeNO_x$ spent catalysts.

Synthesis of Ti-doped $Li_3AIH_6$ powders by mechanochemical reaction and their thermal decomposition behavior (기계화학반응법을 이용한 Ti-doped $Li_3AIH_6$ 분말의 합성과 열분해 특성)

  • Lee, E.K.;Kim, Y.K.;Cho, Y.W.;Yoon, J.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.92-101
    • /
    • 2005
  • [ $Li_3AlH_6$ ] (5.6wt% theoretical hydrogen storage capacity) powders with and without Ti-containing dopants have been successfully synthesized by mechanochemical reaction near room temperatures from mixtures of LiH and $LiAlH_4$ powders. It has been observed that single phase $Li_3AlH_6$ could be obtained within 2-3 hours of milling, but the addition of reactive $TiCl_2\;or\;TiCl_3$ to the starting mixtures. caused partial decomposition of $LiAlH_4$ into LiCl and free Al with gaseous $H_2$. By addition of these reactive dopants to the as-synthesized $Li_3AlH_6$, this problem could be solved. The addition of 2 mol% $TiCl_2\;or\;TiCl_3\;to\;Li_3AlH_6$ decreased the decomposition start temperature up to 30-50$^{\circ}C$, while that of Ti or $TiH_2$ did not change the thermal decomposition behavior of $Li_3AIH_6$.

Effect of Ball-milling Time on Reduction Behavior in Mechanochemical Process for Preparation of W-Cu Composite Powders (W-Cu 복합분말의 제조를 위한 기계화학적 공정에서 볼 밀링 시간에 따른 환원거동)

  • Kim, Dae-Gun;Lee, Kang-Won;Suk, Myung-Jin;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.169-173
    • /
    • 2003
  • W-Cu composite powders can be prepared by mechanochemical process, where the $WO_3$-CuO composite powders were mechanically synthesized from the elemental oxide powders and subsequently reduced to W-Cu composite powders. In the present work, reduction behavior of$ WO_3$-CuO composite powders that were synthesized at different milling time was examined in terms of hygrometric analysis. In case of $WO_3$-CuO ball-milled for 20 h, the reaction temperature of CuO\longrightarrowCu became lower than in case of 1 h. Also, the reaction of $WO_3$\longrightarrow$WO_{2.9-2.72}$ and $WO_{2.9-2.72}$ \longrightarrow$WO_2$were shifted to lower temperatures and the peaks were changed to much sharper shape. While the reaction of $WO_2$\longrightarrowW in case of ball-milling for 20 h started at lower temperature, the peak temperature was the same as in 1 h ball-milling. The reduced W particle size was somewhat finer fer 20 h ball-milling. It was considered that the refinement of oxide particles caused by ball-milling process leads to such a change in the reduction behavior.

Synthesis and thermal decomposition of $Zn[BH_4]_2$ ($Zn[BH_4]_2$ 분말의 합성과 열분해 특성)

  • Jeon, Eun;Cho, Young-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.262-268
    • /
    • 2005
  • [ $Zn(BH_4)_2$ ](8.4 wt% theoretical hydrogen storage capacity powders have been successfully synthesized by mechanochemical reaction from mixtures of $ZnCl_2$ and $NaBH_4$ powders in a 1:2 molar ratio in different times. $$ZnCl_2+2NaBH_4{\rightarrow}Zn(BH_4)_2+2NaCl$$ (1) $Zn(BH_4)_2$ powders were characterized by X-ray diffractometry(XRD), and Furier Transform Infrared spectrometry(FT-IR). The thermal stabilities of $Zn(BH_4)_2$ powders were studied by Differential scanning calorimetry(DSC), Thermogravimetry analysis(TGA), and Mass spectrometry(MS). $Zn(BH_4)_2$ can be tested for hydrogen evolution without further purification. The reaction to yield hydrogen is irreversible, the other products being compounds of Zn, and borane. $Zn(BH_4)_2$ thermally decomposes to release borane and hydrogen gas between about 85 and 150$^{\circ}C$.

The Origin of the Residual Carbon in LiFePO4 Synthesized by Wet Milling

  • Park, Sung-Bin;Park, Chang-Kyoo;Hwang, Jin-Tae;Cho, Won-Il;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.536-540
    • /
    • 2011
  • This study reports the origin of the electrochemical improvement of $LiFePO_4$ when synthesized by wet milling using acetone without conventional carbon coating. The wet milled $LiFePO_4$ delivers 149 $mAhg^{-1}$ at 0.1 C, which is comparable to carbon coated $LiFePO_4$ and approximately 74% higher than that of dry milled $LiFePO_4$, suggesting that the wet milling process can increase the capacity in addition to conventional carbon coating methods. UV spectroscopy, elemental microanalysis, and evolved gas analysis are used to find the root cause of the capacity improvement during the mechanochemical reaction in acetone. The analytical results show that the improvement is attributed to the conductive residual carbon on the surface of the wet milled $LiFePO_4$ particles, which is produced by the reaction of $FeC_2O_4{\cdot}2H_2O$ with acetone during wet milling through oxygen deficiency in the precursor.

A Study of Structural Characteristic Control and Reaction Activity of V/TiO2 for NH3-SCR according to Preparation Method (제조방법에 따른 NH3-SCR용 V/TiO2의 구조적 특성 제어 및 반응활성 영향 연구)

  • Shin, Jung Hun;Kwon, Dong Wook;Hong, Sung Chang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.297-305
    • /
    • 2017
  • In this study, the activity and structural properties of catalysts prepared by mechanochemical method under dry condition were studied. A dry milling was used as a mechanochemical method. The precursors of vanadium were $NH_4VO_3$ and $V_2O_5$. The activity and characterization of the catalysts prepared by dry milling were compared with those prepared by impregnation. In addition, the correlation between the catalytic activity and the structural characteristics was observed through XRD, Raman, and $H_2$-TPR analysis. As a result, the monomeric vanadate species exhibited excellent redox characteristics, which were confirmed to be related to the catalytic activity.

A Study of Hydroxyapatite Production from Waste Oyster Used Mechanochemical Treatment

  • Kim, Sun-Tae;Oh, Chi-Jung;Kim, Wan-Tae;Kim, Young-Sig;Kim, Myong-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.469-471
    • /
    • 2001
  • Dry grinding of a mixture of CaCO$_3$ and Ca(H$_2$PO$_4$)$_2$.$H_2O$ was conducted using a planetary ball mill in order to investigate solid state reaction for a synthesis of hydroxyapatite(Ca$_{10}$(PO$_4$)$_{6}$(OH)$_2$, HAp) through mechanochemical treatment method. The raw materials, which are composed of waste oyster and calcium biphosphate Ca(H$_2$PO$_4$)$_2$.$H_2O$, were mixed and then treated mechanochemically. The synthesis of hydroxyapatite(Ca$_{10}$(PO$_4$)$_{6}$(OH)$_2$, HAp) from the mixture was almost completed by about 60 minute grinding. The formation of HAp monophase in the ground mixture was characterized through X-ray diffraction (XRD) analysis. Moreover, the formation of HAp monophase depending on the grinding time was improved by increasing the grinding time.ime.ime.

  • PDF

Preparation of Pure Silver Powders by using Mechanochemical Process (기계화학공정(機械化學工程)에 의한 은(銀)염화물로부터 고순도 은(銀)분말 제조(製造))

  • Lee, Jaer-Yeong;Tung Le, M.;Ahn, Jong-Gwan;Kim, Jong-Oh;Chung, Hun S.;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.33-37
    • /
    • 2006
  • An equal-molar mixture of silver chloride (AgCl) and copper (Cu) was ground in atmosphere conditions using a planetary ball mill to investigate mechanochemical (MC) reaction for preparation of silver powders. The reaction causes the mixture of AgCl and Cu to change the composition of the mixture, such as silver (Ag) and cuprous chloride (CuCl). Through the leaching with ammonium hydroxide solution (1 mol), CuCl can be separated from MC product, so that pure Ag powders can be obtained as the final product. Moreover, polyvinylpyrrolidone (PVP) was used as the additive not only to improve dispersion of Ag pow- der during MC process, but also to control surface oxidation of Ag powders, prepared as the final product.