Synthesis of Ti-doped $Li_3AIH_6$ powders by mechanochemical reaction and their thermal decomposition behavior

기계화학반응법을 이용한 Ti-doped $Li_3AIH_6$ 분말의 합성과 열분해 특성

  • Lee, E.K. (School of Materials Science and Engineering, Seoul National University) ;
  • Kim, Y.K. (NanoMaterials Research Center, Korea Institute of Science and Technology) ;
  • Cho, Y.W. (NanoMaterials Research Center, Korea Institute of Science and Technology) ;
  • Yoon, J.K. (School of Materials Science and Engineering, Seoul National University)
  • 이응규 (서울대학교 재료공학부) ;
  • 김영관 (한국과학기술연구원 나노재료연구센터) ;
  • 조영환 (한국과학기술연구원 나노재료연구센터) ;
  • 윤종규 (서울대학교 재료공학부)
  • Published : 2005.03.15

Abstract

[ $Li_3AlH_6$ ] (5.6wt% theoretical hydrogen storage capacity) powders with and without Ti-containing dopants have been successfully synthesized by mechanochemical reaction near room temperatures from mixtures of LiH and $LiAlH_4$ powders. It has been observed that single phase $Li_3AlH_6$ could be obtained within 2-3 hours of milling, but the addition of reactive $TiCl_2\;or\;TiCl_3$ to the starting mixtures. caused partial decomposition of $LiAlH_4$ into LiCl and free Al with gaseous $H_2$. By addition of these reactive dopants to the as-synthesized $Li_3AlH_6$, this problem could be solved. The addition of 2 mol% $TiCl_2\;or\;TiCl_3\;to\;Li_3AlH_6$ decreased the decomposition start temperature up to 30-50$^{\circ}C$, while that of Ti or $TiH_2$ did not change the thermal decomposition behavior of $Li_3AIH_6$.

Keywords

References

  1. B. Bogdanovic and M. Schwickardi : 'Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials', Journal of Alloys and Compounds, Vol. 253-254, 1997, p. 1 https://doi.org/10.1016/S0925-8388(96)03049-6
  2. C.M. Jensen, R. Zidan, N. Mariels, A. Hee, and C. Hagen : 'Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material?', International Journal of Hydrogen Energy, Vol. 24, 1999, p. 461 https://doi.org/10.1016/S0360-3199(98)00092-5
  3. J. Huot, S. Boily, V. Guther, and R. Schulz : 'Synthesis of $Na_3AIH_6$ and $Na_2LiAIH_6$ by mechanical alloying', Journal of Alloys and Compounds, Vol. 283, 1999, p. 304. https://doi.org/10.1016/S0925-8388(98)00875-5
  4. L. Zaluski, A. Zaluska, and J.O. Strom-Olsen : 'Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis', Journal of Alloys and Compounds, Vol 290, 1999, p. 71 https://doi.org/10.1016/S0925-8388(99)00211-X
  5. K.J. Gross, GJ. Thomas, and C.M. Jensen 'Catalyzed alanates for hydrogen storage', Journal of Alloys and Compounds, Vol. 330-332, 2002, p. 683 https://doi.org/10.1016/S0925-8388(01)01586-9
  6. G. Sandrock, K. Gross, and G. Thomas 'Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates', Journal of Alloys and Compounds, Vol. 339, 2002, p. 299 https://doi.org/10.1016/S0925-8388(01)02014-X
  7. M. Fichtner, O. Fuhr, O. Kircher, and J. Rothe 'Small Ti clusters for catalysis of hydrogen exchange in $NaAIH_{4}$', Nanotechnology, Vol. 14, 2003, p. 778 https://doi.org/10.1088/0957-4484/14/7/314
  8. A. Zuttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron, and C. Emmenegger 'Hydrogen storage properties of $LiBH_{4}$', Journal of Alloys and Compounds, Vol. 356-357, 2003, p. 515 https://doi.org/10.1016/S0925-8388(02)01253-7
  9. B. Bogdanovic, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte, and F. Schuth 'Improved Hydrogen Storage Properties of Ti-Doped Sodium Alanate Using Titanium Nanoparticles as Doping Agents', Advanced Materials, Vol. 15, 2003, p. 1012 https://doi.org/10.1002/adma.200304711
  10. D.L. Anton 'Hydrogen desorption kinetics in transition metal modified $NaAIH_{4}$', Journal of Alloys and Compounds, Vol. 356-357, 2003, p. 400 https://doi.org/10.1016/S0925-8388(03)00140-3
  11. J.A. Dilts and E.C. Ashby 'Thermal decomposition of complex metal hydride', Inorganic Chemistry, Vol. 11, 1972, p. 1230 https://doi.org/10.1021/ic50112a015
  12. J. Chen, N. Kuriyama, Q. Xu, H.T. Takeshita, and T. Sakai 'Reversible Hydrogen Storage via Titanium-Catalyzed $LiAIH_{4}$ and $Li_{3}AIH_{6}$', The Journal of Physical Chemistry - Part B, Vol. 105, 2001, p. 11214 https://doi.org/10.1021/jp012127w
  13. T.N. Dymova, S.J. Bakum Russ. J. Inorg. Chem., Vol. 14, 1969, p. 1683
  14. T.N. Dymova, D.P. Aleksandrov, V.N. Konoplev, T.A. Silina, A.S. Sizareva 'Spontaneous and Thermal Decomposition of Lithium Tetrahydroaluminate LiAIH4: The Promoting Effect of Mechanochemical Action on the Process' , Russian Journal of Coordination Chemistry, Vol. 20, 1994, p. 263
  15. T.N. Dymova, V.N. Konoplev, D.P. Aleksandrov, A.S. Sizareva, T.A. Silina : 'A Novel View of the Nature of Chemical- and Phase-Composition Modifications in Lithium Hydridoaluminates $LiAIH_{4}$ and $Li_{3}AIH_{6}$ on Heating', Russian Journal of Coordination Chemistry, Vol. 21, 1995, p. 175
  16. J. Block and A.P. Gray 'The Thermal Decomposition of Lithium Aluminum Hydride', Inorganic Chemistry, Vol. 4, 1965, p. 304 https://doi.org/10.1021/ic50025a009
  17. E.K. Lee, Y.H. Cho : unpublished work, (2004)
  18. P. Claudy, B. Bonnetot, G. Chahine, J.M. Letoffe 'Etude du comportement thermique du tetrahydroaluminate de sodium $NaAIH_{4}$ et de I'hexahydroaluminate de sodium P. Claudy, B. Bonnetot, G. Chahine, J.M. Letoffe 'Etude du comportement thermique du tetrahydroaluminate de sodium $NaAIH_{4}$ et de I'hexahydroaluminate de sodium $Na_{3}AIH_{6}$DE 298 A 600K', Thermochimica Acta, Vol. 38, 1980, p. 75 https://doi.org/10.1016/0040-6031(80)87150-4
  19. Y. Song, Z.X. Guo, R. Yang : 'Influence of titanium on the hydrogen storage characteristics of magnesium first principle investigation', Science and Engineering A, hydride: a Materials Vol. 365, 2004, p. 73 https://doi.org/10.1016/j.msea.2003.09.008
  20. V. P. Balema, K. W. Dennis, and V. K. Pecharsky 'Rapid solid-state transformation of tetrahedral [AIH4]- into octahedral [AIH6]- in lithium aluminohydride', Chemical Communication, 2000, p. 1665