DOI QR코드

DOI QR Code

Mechanochemical Approach for Oxide Reduction of Spent Nuclear Fuels for Pyroprocessing

  • Received : 2020.10.06
  • Accepted : 2020.11.20
  • Published : 2021.06.30

Abstract

Solid-state mechanochemical reduction combined with subsequent melting consolidation was suggested as a technical option for the oxide reduction in pyroprocessing. Ni ingot was produced from NiO as a starting material through this technique while Li metal was used as a reducing agent. To determine the technical feasibility of this approach for pyroprocessing, which handles spent nuclear fuels, thermodynamic calculations of the phase stabilities of various metal oxides of U and other fission elements were made when several alkaline and alkali-earth metals were used as reducing agents. This technique is expected to be beneficial, not only for oxide reduction but also for other unit processes involved in pyroprocessing.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MISP) (2017M2A8A5015077).

References

  1. H.S. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim, "Pyroprocessing Technology Development at Kaeri", Nucl. Eng. Technol., 43(4), 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  2. K.C. Song, H. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho, "Status of Pyroprocessing Technology Development in Korea", Nucl. Eng. Technol., 42(2), 131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  3. E.Y. Choi, J.M. Hur, I.K. Choi, S.G. Kwon, D.S. Kang, S.S. Hong, H.S. Shin, M.A. Yoo, and S.M. Jeong, "Electrochemical Reduction of Porous 17 kg Uranium Oxide Pellets by Selection of an Optimal Cathode/Anode Surface Area Ratio", J. Nucl. Mater., 418(1-3), 87-92 (2011). https://doi.org/10.1016/j.jnucmat.2011.08.001
  4. J.M. Hur, S.M. Jeong, and H. Lee, "Underpotential Deposition of Li in a LiCl-Li2O Electrolyte for the Electrochemical Reduction of U From Uranium Oxides", Electrochem. Commun., 12(5), 706-709 (2010). https://doi.org/10.1016/j.elecom.2010.03.012
  5. S.D. Herrmann, S.X. Li, M.F. Simpson, and S. Phongikaroon, "Electrolytic Reduction of Spent Nuclear Oxide Fuel as Part of an Integral Process to Separate and Recover Actinides From Fission Products", Sep. Sci. Technol., 41(10), 1965-1983 (2006). https://doi.org/10.1080/01496390600745602
  6. M. Iizuka, Y. Sakamura, and T. Inoue, "Electrochemical Reduction of (U-40Pu-5Np)O2 in Molten LiCl Electrolyte", J. Nucl. Mater., 359(1-2), 102-113 (2006). https://doi.org/10.1016/j.jnucmat.2006.08.003
  7. Y. Sakamura, M. Kurata, and T. Inoue, "Electrochemical Reduction of UO2 in Molten CaCl2 or LiCl", J. Electrochem. Soc., 153(3), D31-D39 (2006). https://doi.org/10.1149/1.2160430
  8. A. Merwin, W.C. Phillips, M.A. Williamson, J.L. Willit, P.N. Motsegood, and D. Chidambaram, "Presence of Li Clusters in Molten LiCl-Li", Sci. Rep., 6, 25435 (2016). https://doi.org/10.1038/srep25435
  9. W.C. Cho, H.J. Kim, H.I. Lee, M.W. Seo, H.W. Ra, S.J. Yoon, T.Y. Mun, Y.K. Kim, J.H. Kim, B.H. Kim, J.W. Kook, C.Y. Yoo, J.G. Lee, and J.W. Choi, "5L-Scale Magnesio-Milling Reduction of Nanostructured SiO2 for High Capacity Silicon Anodes in Lithium-Ion Batteries", Nano Lett., 16(11), 7261-7269 (2016). https://doi.org/10.1021/acs.nanolett.6b03762
  10. G.J. Lee, E.K. Park, S.A. Yang, J.J. Park, S.D. Bu, and M.K. Lee, "Rapid and Direct Synthesis of Complex Perovskite Oxides Through a Highly Energetic Planetary Milling", Sci. Rep., 7, 46241 (2017). https://doi.org/10.1038/srep46241
  11. A. Roine, "Outotec's HSC Chemistry 9 Software, Chemical Reaction and Equilibrium Software With Extensive Thermochemical Database and Flowsheet Simulation," Version 9.7, Outotec Oy, Information Center, P.O. Box 69, FIN-28101, Pori, Finland (December 16, 2015).
  12. S. Imoto, "Chemical State of Fission Products in Irradiated UO2", J. Nucl. Mater., 140(1), 19-27 (1986). https://doi.org/10.1016/0022-3115(86)90192-3
  13. K. Kurosaki, K. Tanaka, M. Osaka, Y. Ohishi, H. Muta, M. Uno, and S. Yamanaka, "Chemical States of Fission Products and Actinides in Irradiated Oxide Fuels Analyzed by Thermodynamic Calculation and Post-Irradiation Examination", Prog. Nucl. Sci. Technol., 2, 5-8 (2011). https://doi.org/10.15669/pnst.2.5
  14. E.Y. Choi, M.K. Jeon, and J.M. Hur, "Reoxidation of Uranium in Electrochemically Reduced Simulated Oxide Fuel During Residual Salt Distillation", J. Radioanal. Nucl. Chem., 314(1), 207-213 (2017). https://doi.org/10.1007/s10967-017-5404-x
  15. M.K. Jeon, T.S. Yoo, E.Y. Choi, and J.M. Hur, "Quantitative Calculation on the Reoxidation Behavior of Oxide Reduction System for Pyroprocessing", J. Radioanal. Nucl. Chem., 313(1), 155-159 (2017). https://doi.org/10.1007/s10967-017-5264-4
  16. E.Y. Choi, M.K. Jeon, J. Lee, S.W. Kim, S.K. Lee, S.J. Lee, D.H. Heo, H.W. Kang, S.C. Jeon, and J.M. Hur, "Reoxidation of Uranium Metal Immersed in a Li2O-LiCl Molten Salt After Electrolytic Reduction of Uranium Oxide", J. Nucl. Mater., 485, 90-97 (2017). https://doi.org/10.1016/j.jnucmat.2016.12.017
  17. Y.H. Kang, S.C. Hwang, H.S. Lee, S.W. Park, and J.H. Lee, "Effects of Neodymium Oxide on the Electrorefining Process of Uranium", J. Mater. Process. Technol., 209(11), 5008-5013 (2009). https://doi.org/10.1016/j.jmatprotec.2009.01.024
  18. T. Kato, T. Inoue, T. Iwai, and Y. Arai, "Separation Behaviors of Actinides From Rare-Earths in Molten Salt Electrorefining Using Saturated Liquid Cadmium Cathode", J. Nucl. Mater., 357(1-3), 105-114 (2006). https://doi.org/10.1016/j.jnucmat.2006.06.003
  19. M. Sakata, M. Kurata, T. Hijikata, and T. Inoue, "Equilibrium Distribution of Rare Earth Elements Between Molten KCl-LiCl Eutectic Salt and Liquid Cadmium", J. Nucl. Mater., 185(1), 56-65 (1991). https://doi.org/10.1016/0022-3115(91)90365-E
  20. S.J. Kim, P.N.V. Ha, and J.Y. Lim, "Impact of Rare Earth Recovery Fraction on Core Physics Parameters of the Korean SFR for TRU Transmutation", Nucl. Technol., 194(3), 340-352 (2016). https://doi.org/10.13182/NT15-53
  21. M.F. Simpson, T.S. Yoo, D. Labrier, M. Lineberry, M. Shaltry, and S. Phongikaroon, "Selective Reduction of Active Metal Chlorides From Molten LiCl-KCl Using Lithium Drawdown", Nucl. Eng. Technol., 44(7), 767-772 (2012). https://doi.org/10.5516/NET.06.2011.010
  22. S. Paek, D. Yoon, J. Jang, G.Y. Kim, and S.J. Lee, "Removal of Rare Earth Elements From a U/RE Ingot via a Reaction With UCl3", J. Radioanal. Nucl. Chem., 322(2), 495-502 (2019). https://doi.org/10.1007/s10967-019-06716-1
  23. S.W. Kim, M.K. Jeon, and E.Y. Choi, "Electrolytic Behavior of SrCl2 and BaCl2 in LiCl Molten Salt During Oxide Reduction in Pyroprocessing", J. Radioanal. Nucl. Chem., 321(1), 361-365 (2019). https://doi.org/10.1007/s10967-019-06547-0
  24. I.S. Kim, S.C. Oh, H.S. Im, J.M. Hur, and H.S. Lee, "Distillation of LiCl From the LiCl-Li2O Molten Salt of the Electrolytic Reduction Process", J. Radioanal. Nucl. Chem., 295(2), 1413-1417 (2013). https://doi.org/10.1007/s10967-012-1997-2
  25. S.C. Jeon, J.W. Lee, J.H. Lee, S.J. Kang, K.Y. Lee, Y.Z. Cho, D.H. Ahn, and K.C. Song, "Fabrication of UO2 Porous Pellets on a Scale of 30 kg-U/Batch at the PRIDE Facility", Adv. Mater. Sci. Eng., 2015, 376173 (2015).
  26. N. Kanari and I. Gaballah, "Chlorination and Carbochlorination of Magnesium Oxide", Metall. Mater. Trans. B, 30(3), 383-391 (1999). https://doi.org/10.1007/s11663-999-0070-1
  27. E.H. Kim. G.I. Park, Y.Z. Cho, and H.C. Yang, "A New Approach to Minimize Pyroprocessing Waste Salts Through a Series of Fission Product Removal Process", Nucl. Technol., 162(2), 208-218 (2008). https://doi.org/10.13182/nt08-a3949
  28. Y.Z. Cho, T.K. Lee, H.C. Eun, J.H. Choi, I.T. Kim, and G.I. Park, "Purification of Used Eutectic (LiCl-KCl) Salt Electrolyte From Pyroprocessing", J. Nucl. Mater., 437(1-3), 47-54 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.344
  29. W. Wulandari, G. Brooks, M.A. Rhamdhani, and Brian J. Monaghan, "Magnesium: Current and Alternative Production Routes", Chemeca conference 2010, 347-357, September 26-29, 2010, Adelaide.