DOI QR코드

DOI QR Code

The Origin of the Residual Carbon in LiFePO4 Synthesized by Wet Milling

  • Park, Sung-Bin (Department of Materials Science and Engineering, Korea University) ;
  • Park, Chang-Kyoo (Department of Materials Science and Engineering, Korea University) ;
  • Hwang, Jin-Tae (Department of Materials Science and Engineering, Korea University) ;
  • Cho, Won-Il (Battery Research Center, Korea Institute of Science and Technology) ;
  • Jang, Ho (Department of Materials Science and Engineering, Korea University)
  • Received : 2010.10.08
  • Accepted : 2010.12.06
  • Published : 2011.02.20

Abstract

This study reports the origin of the electrochemical improvement of $LiFePO_4$ when synthesized by wet milling using acetone without conventional carbon coating. The wet milled $LiFePO_4$ delivers 149 $mAhg^{-1}$ at 0.1 C, which is comparable to carbon coated $LiFePO_4$ and approximately 74% higher than that of dry milled $LiFePO_4$, suggesting that the wet milling process can increase the capacity in addition to conventional carbon coating methods. UV spectroscopy, elemental microanalysis, and evolved gas analysis are used to find the root cause of the capacity improvement during the mechanochemical reaction in acetone. The analytical results show that the improvement is attributed to the conductive residual carbon on the surface of the wet milled $LiFePO_4$ particles, which is produced by the reaction of $FeC_2O_4{\cdot}2H_2O$ with acetone during wet milling through oxygen deficiency in the precursor.

Keywords

References

  1. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.
  2. MacNeil, D. D.; Lu, Z.; Chen, Z.; Dahn, J. R. J. Power Sources 2002, 108, 8. https://doi.org/10.1016/S0378-7753(01)01013-8
  3. Takshashi, M.; Tobishima, S. I.; Takei, K.; Sakurai, Y. Solid State Ion. 2002, 148, 283. https://doi.org/10.1016/S0167-2738(02)00064-4
  4. Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; Armand, M. J. Power Sources 2001, 97/98, 503. https://doi.org/10.1016/S0378-7753(01)00727-3
  5. Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517. https://doi.org/10.1016/S0013-4686(01)00631-4
  6. Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184. https://doi.org/10.1149/1.1498255
  7. Chung, S. Y.; Bloking, J. T.; Chiang Y. M. Nat. Mater. 2002, 1, 123. https://doi.org/10.1038/nmat732
  8. Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 195108. https://doi.org/10.1103/PhysRevB.68.195108
  9. Wang, D.; Li, H.; Shi, S.; Huang, X.; Chen, L. Electrochim. Acta 2005, 50, 2955. https://doi.org/10.1016/j.electacta.2004.11.045
  10. Spong, A.; Vitins, G.; Owen, J. R. J. Electrochem. Soc. 2005, 152, A2376. https://doi.org/10.1149/1.2120427
  11. Konarova, M.; Taniguchi, I. J. Power Sources 2010, 195, 3661. https://doi.org/10.1016/j.jpowsour.2009.11.147
  12. Zhang, D.; Cai, R.; Zhou, Y.; Shao, Z.; Liao, X.; Ma, Z. Electrochim. Acta 2010, 55, 2653. https://doi.org/10.1016/j.electacta.2009.12.023
  13. Meilgrana, G.; Gerbaldi, C.; Tuel, A.; Bodardo, S.; Penazzi, N. J. Power Sources 2006, 160, 516. https://doi.org/10.1016/j.jpowsour.2005.12.067
  14. Holland, T.; Redfern, S. Mineral. Mag. 1997, 61, 65. https://doi.org/10.1180/minmag.1997.061.404.07
  15. Mi, C. H.; Zhao, X. B.; Cao, G. S.; Tu, J. P. J. Electrochem. Soc. 2005, 152, A483. https://doi.org/10.1149/1.1852438
  16. Cao, Y. L.; Yu, L. H.; Li, T.; Ai, X. P.; Yang, H. X. J. Power Sources 2007, 172, 913. https://doi.org/10.1016/j.jpowsour.2007.05.013
  17. Yang, S. T.; Zhao, N. H.; Dong, H. Y.; Yang, J. X.; Yue, H. Y. Electrochim. Acta 2005, 51, 166. https://doi.org/10.1016/j.electacta.2005.04.013
  18. Myung, S. T.; Komaba, S.; Hirosaki, N.; Yashiro, H.; Kumagai, N. Electrochim. Acta 2004, 49, 4213. https://doi.org/10.1016/j.electacta.2004.04.016
  19. Kwon, S. J.; Kim, C. W.; Jeong, W. T.; Lee, K. S. J. Power Sources 2004, 137, 93. https://doi.org/10.1016/j.jpowsour.2004.05.048
  20. Wang, G. X.; Yang, L.; Bewlay, S. L.; Chen, Y.; Liu, H. K.; Ahn, J. H. J. Power Sources 2005, 146, 521. https://doi.org/10.1016/j.jpowsour.2005.03.201
  21. Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem. Solid State Lett. 2001, 4, A170. https://doi.org/10.1149/1.1396695
  22. Shin, H. C.; Cho, W. I.; Jang, H. Electrochim. Acta 2006, 52, 1472. https://doi.org/10.1016/j.electacta.2006.01.078
  23. Dong, Y. Z.; Zhao, Y. M.; Duan, H.; Chen, L.; He, Z. F.; Chen, Y. H. J. Solid State Electrochemistry 2010, 14, 131. https://doi.org/10.1007/s10008-009-0798-1
  24. Yang, G.; Zhang, X.; Liu, J.; He, X.; Wang, J.; Xie, H.; Wang, R. J. Power Sources 2010, 195, 1211. https://doi.org/10.1016/j.jpowsour.2009.08.060
  25. Zhang, L.; Peng, G.; Yang, X.; Zhang, P. Vacuum 2010, 84, 1319. https://doi.org/10.1016/j.vacuum.2010.02.011
  26. Fey, G. T.; Chen, Y. G.; Kao, H. M. J. Power Sources 2009, 189, 169. https://doi.org/10.1016/j.jpowsour.2008.10.016