• Title/Summary/Keyword: mechanochemical method

Search Result 27, Processing Time 0.028 seconds

Structural and Electrochemical characterization of LiCoO2 Nano Cathode Powder Fabricated by Mechanochemical Process (기계 화학법에 의해 제작된 나노 LiCoO2 양극 분말의 구조 및 전기화학적 특성)

  • Choi, Sun-Hee;Kim, Joo-Sun;Yoon, Young-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • $LiCoO_2$ cathode powders with round particle shaped and nano grain sized of 70-300nm were synthesized by a mechanochemical method. The surface of Li-Co precursor prepared by freeze drying method was modified by $K_2SO_4$ coating and ball milling was used for the coating process. The precursor was crystallized to high temperature form of $LiCoO_2$ at $800^{\circ}C$ and the grain growth was inhibited by the $K_2SO_4$ coating effect. The $K_2SO_4$ coating was not decomposed at $800^{\circ}C$ and prevented the contact in the Li-Co precursor particles. The nano-sized $LiCoO_2$ powder had tetragonal phase and it affected the Li diffusion through the surface of particles. It means that the anode materials for hight performance battery should be satisfied not only small particle size but phase contol on the surface of particles. In this study, the powder characteristics and rate capabilities were compared with a commercial powder and the nano-sized $LiCoO_2$ powder fabricated by the mechanochemical method. And the crucial factor which affects on battery performance was also examined.

Study of Conversion of Waste LFP Battery into Soluble Lithium through Heat Treatment and Mechanochemical Treatment (열처리 및 기계화학적 처리를 통한 폐LFP 배터리로부터 가용성 리튬으로의 전환 연구)

  • Boram Kim;Hee-Seon Kim;Dae-Weon Kim
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.21-29
    • /
    • 2024
  • Globally, the demand for electric vehicles (EVs) is surging due to carbon-neutral strategies aimed at decarbonization. Consequently, the demand for lithium-ion batteries, which are essential components of EVs, is also rising, leading to an increase in the generation of spent batteries. This has prompted research into the recycling of spent batteries to recover valuable metals. In this study, we aimed to selectively leach and recover lithium from the cathode material of spent LFP batteries. To enhance the reaction surface area and reactivity, the binder in the cathode material powder was removed, and the material was subjected to heat treatment in both atmospheric and nitrogen environments across various temperature ranges. This was followed by a mechanochemical process for aqueous leaching. Initially, after heat treatment, the powder was converted into a soluble lithium compound using sodium persulfate (Na2S2O8) in a mechanochemical reaction. Subsequently, aqueous leaching was performed using distilled water. This study confirmed the changes in the characteristics of the cathode material powder due to heat treatment. The final heat treatment in a nitrogen atmosphere resulted in a lithium leaching efficiency of approximately 100% across all temperature ranges.

The Characteristic of Prepared Electrode Catalyst and MEA using CNF and CNT (CNT 및 CNF를 이용하여 제조된 전극 촉매 및 막 전극 접합체의 특성)

  • 임재욱;최대규;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • The performance of fuel cell electrode depends on the characteristics of the catalyst support material. This paper deals with the use of CNF(carbon nanofibre) and CNT(carbon nanotube) as platinum catalyst support. The CNF and CNT were synthesized with catalyst treated by mechanochemical process and were prepared by chemical vapor deposition (CVD) method. The platinum supported on CNF and CNT for polymer electrolyte membrane fuel cell (PEMFC) application. In result, the best I-V characteristic was verified by the prepared MEA(membrane electrode assembly) from twisted CNF that had a diameter of 65 nm.

  • PDF

Mirror Surface Grinding Using Ultrafine Grit Wheel (초미립 숫돌에 의한 경면연삭)

  • Jeong, H.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.45-51
    • /
    • 1996
  • Silicon wafers are required to be finished under the roughness of nanometer order for the subsequent chip fabrication processes. Recently, the finish grinding techniques have been researched for the improvement of accuracy and surface roughness simultaneously. Among them, the grinding technique using fine abrasive has been known as an easily accessible method. However, the manufacture of the fine grit grinding wheel has been very difficult because of the coherence of the grits. In this paper, the development of the ultrafine grit silica($SiO_2$) grinding wheel by the combination of the binder coating and the vacuum forming techniques is reported. And, the mechanochemical removal effects of the grinding conditions are discussed. Finally, a successful result of Ra O.4nm. Rmax 4nm in the ground surface roughness of a 6 inch silicon wafer was achieved.

  • PDF

Effect of Preparation on Structure and Magnetic Properties of ZnFe2O4

  • Niyaifar, Mohammad
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.101-105
    • /
    • 2014
  • In this work, Zinc ferrite nanoparticles have been prepared by various methods, conventional (ZC), mechanochemical processing (ZM) and Sol-Gel (ZS) method, to compare their structural and magnetic properties. The cation distribution obtained from XRD shows the degrees of inversions are 4%, 14.8%, and 16.4% from the normal $ZnFe_2O_4$ structure. Fourier transform infrared spectroscopy (FT-IR) confirms changes in cation distribution of $ZnFe_2O_4$ fabricated by sol-gel and mechanochemical processing. The $^{57}Fe$ M$\ddot{o}$ssbauer spectra of the samples were recorded at room temperature. The spectra exhibit a line broadening. The magnetic properties of the samples were studied by vibration sample magnetometer (VSM) at room temperature and the results show that the sample ZM has ferrimagnetic behaviour.

Mechanochemistry on Self-Assembled Monolayer(SAM) /Electrodes after Contacting with Polymeric Stamp (고분자물질과 접촉한 자기조립단분자막 전극 물질의 기계화학 현상 분광학적 연구)

  • Yun, Changsuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.265-270
    • /
    • 2020
  • We investigated mechanochemical radical, which is concomitant with chemical lift-off lithography(CLL), on the self-assembled monolayer(SAM)/electrodes and a polydimethylsiloxane(PDMS) using a colorimetric and a spectroscopic method. The 11-mercaptoundecanol(MUO)/Au or the 11-hydroxyundecylphosphonic acid (HUPA)/ITO were contacted with bare or activated PDMS. After contact, the each of SAM/substrates and the PDMS were immersed in a 2,2 Diphenyl-1-picrylhydrazyl(DPPH) radical scavenger. The color of the DPPH exposed to the PDMS was changed from purple to yellow and the absorbance decreased definitely at 515 nm wavelength. The SAM/substrates, however, have caused small changes in spectroscopic property, indicating no existence of radical species. We concluded that mechanochemical radicals were formed by homolytic cleavage of PDMS molecules upon external force and hardly transferred on the SAM/substrates.

A simple chemical method for conversion of Turritella terebra sea snail into nanobioceramics

  • Sahin, Yesim Muge;Orman, Zeynep;Yucel, Sevil
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.492-498
    • /
    • 2018
  • In this study, a sea shell was converted into bioceramic phases at three different sintering temperatures ($450^{\circ}C$, $850^{\circ}C$, $1000^{\circ}C$). Among the obtained bioceramic phases, a valuable ${\beta}-TCP$ was produced via mechanochemical conversion method from sea snail Turritella terebra at $1000^{\circ}C$ sintering temperature. For this reason, only the bioceramic sintered at $1000^{\circ}C$ was concentrated on and FT-IR, SEM/EDX, BET, XRD, ICP-OES analyses were carried out for the complete characterization of ${\beta}-TCP$ phase. Biodegradation test in Tris-buffer solution, bioactivity tests in simulated body fluid (SBF) and cell studies were conducted. Bioactivity test results were promising and high rate of cell viability was observed in MTT assay after 24 hours and 7 days incubation. Results demonstrated that the produced ${\beta}-TCP$ bioceramic is qualified for further consideration and experimentation with its features of pore size and ability to support bone tissue growth and cell proliferation. This study suggests an easy, economic method of nanobioceramic production.

The Characterization of Nano-Nickel Catalyst with High Activity by Mechanochemical (MC) Method I. Microstructure of MA Ni-50wt% Al and Preparation of Nano-Ni (기계.화학적 방법으로 제조된 고활성 나노-니켈 촉매의 특성 I. MA된 Ni-50wt% Al 합금의 미세구조 및 나노 촉매 제조)

  • Lee, Chang-Rae;Choe, Jae-Ung;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.615-621
    • /
    • 1999
  • The new process in order to fabricate of Ni catalyst with high activity by the mechanochemical(MC) method which was combined the mechanical alloying(MA) and the chemical treatment process. The microstructure and characterization of mechanically alloyed Ni-5-wt% Al powder and Ni catalyst gained by alkali leaching were investigated byt he various analysis such as XRD, SEM-EDS, HRTEM and laser particle analyzer. The steady state powder with 1~2$\mu\textrm{m}$ mean particle size was obtained after 30hr milling with the PCA of 2 wt% stearic acid under the condition of grinding stainless steel ball to powder ratio of 60:1 and rotating speed fo 300rpm. According to result of HRTEM diffraction pattern, MA powder of the steady state was nanocrystalline $Al_3$$Ni_2$ intermetallic compound. Ni catalyst was obtained after KOH leaching of the steady state powder was about 20nm nanocrystalline which contained about 8 wt % Al.

  • PDF

Preparation and Characterization of LaAlO3 Ceramics from High Energy Ball Milling Powders (고에너지 볼 밀에 의한 LaAlO3 세라믹스의 제조와 특성)

  • 최상수;서병준;여기호;정수태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Fine LaAlO$_3$ powders wore successfully synthesized from La$_2$O$_3$ and ${\gamma}$ $Al_2$O$_3$ powders milling for 10∼50 hours via the high energy milling technique (mechanochemical method) in room temperature and air. The particle size of LaAlO$_3$ powder were estimated from XRD patterns and SEM images to be 160∼180 nm. The LaAlO$_3$ ceramics arc derived for the synthesized powders (milling for 10, 30 and 50 hours) by sintering at 140$0^{\circ}C$ and 150$0^{\circ}C$. The micrographs of grains showed an agglomeration and the degree of agglomeration increased with the milling time. The LaAlO$_3$ made from synthesized powders milling for 50 hours can be sintered to 99.5% of theoretical density at 150$0^{\circ}C$ for 1 hour. These ceramics exhibits a dielectric constant of 20, a dielectric loss of 0.0003 and a temperature coefficient of capacitance of 15 ppm/$^{\circ}C$ at 1 MHz.

Cobalt Recovery by Oxalic Acid and Hydroxide Precipitation from Waste Cemented Carbide Scrap Cobalt Leaching Solution (폐초경 스크랩 코발트 침출용액으로부터 옥살산 및 수산화물 침전에 의한 코발트 분말 회수)

  • Lee, Jaesung;Kim, Mingoo;Kim, Seulgi;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.497-501
    • /
    • 2021
  • Cobalt (Co) is mainly used to prepare cathode materials for lithium-ion batteries (LIBs) and binder metals for WC-Co hard metals. Developing an effective method for recovering Co from WC-Co waste sludge is of immense significance. In this study, Co is extracted from waste cemented carbide soft scrap via mechanochemical milling. The leaching ratio of Co reaches approximately 93%, and the leached solution, from which impurities except nickel are removed by pH titration, exhibits a purity of approximately 97%. The titrated aqueous Co salts are precipitated using oxalic acid and hydroxide precipitation, and the effects of the precipitating agent (oxalic acid and hydroxide) on the cobalt microstructure are investigated. It is confirmed that the type of Co compound and the crystal growth direction change according to the precipitation method, both of which affect the microstructure of the cobalt powders. This novel mechanochemical process is of significant importance for the recovery of Co from waste WC-Co hard metal. The recycled Co can be applied as a cemented carbide binder or a cathode material for lithium secondary batteries.