Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.6.497

Cobalt Recovery by Oxalic Acid and Hydroxide Precipitation from Waste Cemented Carbide Scrap Cobalt Leaching Solution  

Lee, Jaesung (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University)
Kim, Mingoo (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University)
Kim, Seulgi (Department of Advanced Materials Engineering, Chungbuk National University)
Lee, Dongju (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University)
Publication Information
Journal of Powder Materials / v.28, no.6, 2021 , pp. 497-501 More about this Journal
Abstract
Cobalt (Co) is mainly used to prepare cathode materials for lithium-ion batteries (LIBs) and binder metals for WC-Co hard metals. Developing an effective method for recovering Co from WC-Co waste sludge is of immense significance. In this study, Co is extracted from waste cemented carbide soft scrap via mechanochemical milling. The leaching ratio of Co reaches approximately 93%, and the leached solution, from which impurities except nickel are removed by pH titration, exhibits a purity of approximately 97%. The titrated aqueous Co salts are precipitated using oxalic acid and hydroxide precipitation, and the effects of the precipitating agent (oxalic acid and hydroxide) on the cobalt microstructure are investigated. It is confirmed that the type of Co compound and the crystal growth direction change according to the precipitation method, both of which affect the microstructure of the cobalt powders. This novel mechanochemical process is of significant importance for the recovery of Co from waste WC-Co hard metal. The recycled Co can be applied as a cemented carbide binder or a cathode material for lithium secondary batteries.
Keywords
WC-Co soft scrap; Recycling; Cobalt leaching; Oxalic acid and hydroxide precipitation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Majumdar, I. Sharma, A. Bidaye and A. Suri: Thermochim. Acta, 473 (2008) 45.   DOI
2 B. M. Abu Zied, S. M. Bawaked, S. A. Kosa and W. Schwieger: Appl. Surf. Sci., 351 (2015) 600.   DOI
3 Y. M. Park, H. Lim, J. H. Moon, H. N. Lee, S. H. Son, H. S. Kim and H. J. Kim: Metals, 7 (2017) 303.   DOI
4 D. Wang, Q. Wang and T. Wang: Inorg. Chem., 50 (2011) 6482.   DOI
5 J. C. Lee, E. y. Kim, J. H. Kim, W. B. Kim, B. S. Kim and B. D. Pandey: Int. J. Refract. Met. Hard Mater., 29 (2011) 365.   DOI
6 Y. Huang, Z. Zhang, Y. Cao, G. Han, W. Peng, X. Zhu, T. Zhang and Z. Dou: Hydrometallurgy, 193 (2020) 105327.   DOI
7 P. K. Katiyar and N. S. Randhawa: Int. J. Refract. Met. Hard Mater., 90 (2020) 105251.   DOI
8 J. Rahbani, N. M. Khashab, D. Patra and M. Al-Ghoul: J. Mater. Chem., 22 (2012).
9 B. Liu, A. Shi, Q. Su, G. Chen, W. Li, L. Zhang and B. Yang: Powder Technol., 306 (2017) 113.   DOI
10 H. Karimi and M. Hadi: Ceram, 46 (2020) 18487.
11 W. H. Gu, Y. S. Jeong, K. M. Kim, J. C. Kim, S. H. Son and S. J. Kim: J. Mater. Process. Technol., 212 (2012) 1250.   DOI
12 T. IshIda, T. Itakura, H. Moriguchi and A. Ikegaya: SEI Tech. Rev., 75 (2012) 30.
13 N. Takeno: Geological Survey of Japan Open File Report, 419 (2005) 102.
14 J. Lee, M. Kim, S. Kim, Y. Ahn, B. Lee and D. Lee: Int. J. Refract. Met. Hard Mater., 100 (2021) 105645.   DOI