DOI QR코드

DOI QR Code

Cobalt Recovery by Oxalic Acid and Hydroxide Precipitation from Waste Cemented Carbide Scrap Cobalt Leaching Solution

폐초경 스크랩 코발트 침출용액으로부터 옥살산 및 수산화물 침전에 의한 코발트 분말 회수

  • Lee, Jaesung (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University) ;
  • Kim, Mingoo (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University) ;
  • Kim, Seulgi (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Lee, Dongju (Department of Urban, Energy, and Environmental Engineering, Chungbuk National University)
  • 이재성 (충북대학교 도시.에너지.환경 융합학부) ;
  • 김민구 (충북대학교 도시.에너지.환경 융합학부) ;
  • 김슬기 (충북대학교 신소재공학과) ;
  • 이동주 (충북대학교 도시.에너지.환경 융합학부)
  • Received : 2021.10.15
  • Accepted : 2021.11.22
  • Published : 2021.12.28

Abstract

Cobalt (Co) is mainly used to prepare cathode materials for lithium-ion batteries (LIBs) and binder metals for WC-Co hard metals. Developing an effective method for recovering Co from WC-Co waste sludge is of immense significance. In this study, Co is extracted from waste cemented carbide soft scrap via mechanochemical milling. The leaching ratio of Co reaches approximately 93%, and the leached solution, from which impurities except nickel are removed by pH titration, exhibits a purity of approximately 97%. The titrated aqueous Co salts are precipitated using oxalic acid and hydroxide precipitation, and the effects of the precipitating agent (oxalic acid and hydroxide) on the cobalt microstructure are investigated. It is confirmed that the type of Co compound and the crystal growth direction change according to the precipitation method, both of which affect the microstructure of the cobalt powders. This novel mechanochemical process is of significant importance for the recovery of Co from waste WC-Co hard metal. The recycled Co can be applied as a cemented carbide binder or a cathode material for lithium secondary batteries.

Keywords

Acknowledgement

이 논문은 2020년도 정부(산업통상자원부)의 재원으로 한국산업기술평가관리원의 지원(20011520, 스크랩을 활용한 정밀가공용 100 nm급 텅스텐계 소재 및 공구제조기술개발)과 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20217510100020, 저품위 공정 폐액으로부터 희소금속 회수 공통 핵심(농축, 분리회수)공정 플랫폼 구축 및 소재화 기술개발).

References

  1. Y. Huang, Z. Zhang, Y. Cao, G. Han, W. Peng, X. Zhu, T. Zhang and Z. Dou: Hydrometallurgy, 193 (2020) 105327. https://doi.org/10.1016/j.hydromet.2020.105327
  2. H. Karimi and M. Hadi: Ceram, 46 (2020) 18487.
  3. P. K. Katiyar and N. S. Randhawa: Int. J. Refract. Met. Hard Mater., 90 (2020) 105251. https://doi.org/10.1016/j.ijrmhm.2020.105251
  4. W. H. Gu, Y. S. Jeong, K. M. Kim, J. C. Kim, S. H. Son and S. J. Kim: J. Mater. Process. Technol., 212 (2012) 1250. https://doi.org/10.1016/j.jmatprotec.2012.01.009
  5. B. Liu, A. Shi, Q. Su, G. Chen, W. Li, L. Zhang and B. Yang: Powder Technol., 306 (2017) 113. https://doi.org/10.1016/j.powtec.2016.10.071
  6. T. IshIda, T. Itakura, H. Moriguchi and A. Ikegaya: SEI Tech. Rev., 75 (2012) 30.
  7. J. C. Lee, E. y. Kim, J. H. Kim, W. B. Kim, B. S. Kim and B. D. Pandey: Int. J. Refract. Met. Hard Mater., 29 (2011) 365. https://doi.org/10.1016/j.ijrmhm.2011.01.003
  8. N. Takeno: Geological Survey of Japan Open File Report, 419 (2005) 102.
  9. J. Lee, M. Kim, S. Kim, Y. Ahn, B. Lee and D. Lee: Int. J. Refract. Met. Hard Mater., 100 (2021) 105645. https://doi.org/10.1016/j.ijrmhm.2021.105645
  10. J. Rahbani, N. M. Khashab, D. Patra and M. Al-Ghoul: J. Mater. Chem., 22 (2012).
  11. S. Majumdar, I. Sharma, A. Bidaye and A. Suri: Thermochim. Acta, 473 (2008) 45. https://doi.org/10.1016/j.tca.2008.04.005
  12. B. M. Abu Zied, S. M. Bawaked, S. A. Kosa and W. Schwieger: Appl. Surf. Sci., 351 (2015) 600. https://doi.org/10.1016/j.apsusc.2015.05.151
  13. Y. M. Park, H. Lim, J. H. Moon, H. N. Lee, S. H. Son, H. S. Kim and H. J. Kim: Metals, 7 (2017) 303. https://doi.org/10.3390/met7080303
  14. D. Wang, Q. Wang and T. Wang: Inorg. Chem., 50 (2011) 6482. https://doi.org/10.1021/ic200309t