• 제목/요약/키워드: mechanobiology

검색결과 8건 처리시간 0.023초

Nano-Precision Tweezers for Mechanosensitive Proteins and Beyond

  • Yang, Taehyun;Park, Celine;Rah, Sang-Hyun;Shon, Min Ju
    • Molecules and Cells
    • /
    • 제45권1호
    • /
    • pp.16-25
    • /
    • 2022
  • Mechanical forces play pivotal roles in regulating cell shape, function, and fate. Key players that govern the mechanobiological interplay are the mechanosensitive proteins found on cell membranes and in cytoskeleton. Their unique nanomechanics can be interrogated using single-molecule tweezers, which can apply controlled forces to the proteins and simultaneously measure the ensuing structural changes. Breakthroughs in high-resolution tweezers have enabled the routine monitoring of nanometer-scale, millisecond dynamics as a function of force. Undoubtedly, the advancement of structural biology will be further fueled by integrating static atomic-resolution structures and their dynamic changes and interactions observed with the force application techniques. In this minireview, we will introduce the general principles of single-molecule tweezers and their recent applications to the studies of force-bearing proteins, including the synaptic proteins that need to be categorized as mechanosensitive in a broad sense. We anticipate that the impact of nano-precision approaches in mechanobiology research will continue to grow in the future.

세포의 메케노바이올로지

  • 신현정
    • 기계저널
    • /
    • 제51권10호
    • /
    • pp.39-43
    • /
    • 2011
  • 이 글에서는 세포의 생리 및 대사에 미치는 물리적 환경과 기계적 자극의 역할과 그 기작에 대해 연구하는 메케노바이올로지(Mechanobiology)라는 새로운 융합학문 분야를 소개하고자 한다.

  • PDF

Traction force microscopy for understanding cellular mechanotransduction

  • Hur, Sung Sik;Jeong, Ji Hoon;Ban, Myung Jin;Park, Jae Hong;Yoon, Jeong Kyo;Hwang, Yongsung
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.74-81
    • /
    • 2020
  • Under physiological and pathological conditions, mechanical forces generated from cells themselves or transmitted from extracellular matrix (ECM) through focal adhesions (FAs) and adherens junctions (AJs) are known to play a significant role in regulating various cell behaviors. Substantial progresses have been made in the field of mechanobiology towards novel methods to understand how cells are able to sense and adapt to these mechanical forces over the years. To address these issues, this review will discuss recent advancements of traction force microscopy (TFM), intracellular force microscopy (IFM), and monolayer stress microscopy (MSM) to measure multiple aspects of cellular forces exerted by cells at cell-ECM and cell-cell junctional intracellular interfaces. We will also highlight how these methods can elucidate the roles of mechanical forces at interfaces of cell-cell/cell-ECM in regulating various cellular functions.

Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces

  • Baek, Kyung Yup;Kim, Seohyun;Koh, Hye Ran
    • Molecules and Cells
    • /
    • 제45권1호
    • /
    • pp.26-32
    • /
    • 2022
  • Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligand-receptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.

Accuracy and reproducibility of 3D digital tooth preparations made by gypsum materials of various colors

  • Tan, Fa-Bing;Wang, Chao;Dai, Hong-Wei;Fan, Yu-Bo;Song, Jin-Lin
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권1호
    • /
    • pp.8-17
    • /
    • 2018
  • PURPOSE. The study aimed to identify the accuracy and reproducibility of preparations made by gypsum materials of various colors using quantitative and semi-quantitative three-dimensional (3D) approach. MATERIALS AND METHODS. A titanium maxillary first molar preparation was created as reference dataset (REF). Silicone impressions were duplicated from REF and randomized into 6 groups (n=8). Gypsum preparations were formed and grouped according to the color of gypsum materials, and light-scanned to obtain prepared datasets (PRE). Then, in terms of accuracy, PRE were superimposed on REF using the best-fit-algorithm and PRE underwent intragroup pairwise best-fit alignment for assessing reproducibility. Root mean square deviation (RMSD) and degrees of similarity (DS) were computed and analyzed with SPSS 20.0 statistical software (${\alpha}=.05$). RESULTS. In terms of accuracy, PREs in 3D directions were increased in the 6 color groups (from 19.38 to $20.88{\mu}m$), of which the marginal and internal variations ranged $51.36-58.26{\mu}m$ and $18.33-20.04{\mu}m$, respectively. On the other hand, RMSD value and DS-scores did not show significant differences among groups. Regarding reproducibility, both RMSD and DS-scores showed statistically significant differences among groups, while RMSD values of the 6 color groups were less than $5{\mu}m$, of which blue color group was the smallest ($3.27{\pm}0.24{\mu}m$) and white color group was the largest ($4.24{\pm}0.36{\mu}m$). These results were consistent with the DS data. CONCLUSION. The 3D volume of the PREs was predisposed towards an increase during digitalization, which was unaffected by gypsum color. Furthermore, the reproducibility of digitalizing scanning differed negligibly among different gypsum colors, especially in comparison to clinically observed discrepancies.

Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

  • Velasco, Marco A.;Lancheros, Yadira;Garzon-Alvarado, Diego A.
    • Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.385-397
    • /
    • 2016
  • Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

3T3-L1 지방전구세포에서 멜라토닌과 유체전단응력의 영향 (Effects of Melatonin and Fluid Shear Stress on 3T3-L1 Preadipocytes)

  • 이정근;이영훈;박채림;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권3호
    • /
    • pp.109-115
    • /
    • 2018
  • Obesity is a worldwide disease caused by the excessive proliferation of adipocytes. Multiple factors, including melatonin and physical loading, are involved in the control of obesity. Melatonin has been shown to induce apoptosis on preadipocytes while physical loading such as fluid shear stress (FSS) affects the proliferation and differentiation of adipocytes. Here, we studied the combined effects of melatonin and FSS on 3T3-L1 preadipocytes. For physical loading, preadipocytes were stimulated with a maximum dynamic fluid shear stress of 1 Pa at 1 Hz for 2 hours with/without melatonin. The experiment conditions were divided into four groups: (1) control, (2) 1 mM melatonin treatment, (3) FSS, and (4) combined 1 mM melatonin and FSS. All groups had a fixed duration time of 2 hours. ERK, p-ERK, COX-2, $C/EBP{\beta}$, $PPAR{\gamma}$, osteopontin, Bax, caspase-3 and caspase-8 proteins were assessed by Western blot analysis. GAPDH was used as a control. Results showed that combined melatonin and FSS treatment activated the ERK/MAPK pathway but not COX-2. Furthermore, combined melatonin and FSS treatment significantly decreased $C/EBP{\beta}$ and $PPAR{\gamma}$ compared to other groups. However, caspase-3 and caspase-8 did not result in significant changes. In summary, combined melatonin and FSS appears to have the potential to inhibit adipogenesis and treat obesity.