DOI QR코드

DOI QR Code

Nano-Precision Tweezers for Mechanosensitive Proteins and Beyond

  • Yang, Taehyun (Department of Physics, Pohang University of Science and Technology) ;
  • Park, Celine (Department of Physics, Pohang University of Science and Technology) ;
  • Rah, Sang-Hyun (Department of Physics, Pohang University of Science and Technology) ;
  • Shon, Min Ju (Department of Physics, Pohang University of Science and Technology)
  • Received : 2021.11.17
  • Accepted : 2022.01.12
  • Published : 2022.01.31

Abstract

Mechanical forces play pivotal roles in regulating cell shape, function, and fate. Key players that govern the mechanobiological interplay are the mechanosensitive proteins found on cell membranes and in cytoskeleton. Their unique nanomechanics can be interrogated using single-molecule tweezers, which can apply controlled forces to the proteins and simultaneously measure the ensuing structural changes. Breakthroughs in high-resolution tweezers have enabled the routine monitoring of nanometer-scale, millisecond dynamics as a function of force. Undoubtedly, the advancement of structural biology will be further fueled by integrating static atomic-resolution structures and their dynamic changes and interactions observed with the force application techniques. In this minireview, we will introduce the general principles of single-molecule tweezers and their recent applications to the studies of force-bearing proteins, including the synaptic proteins that need to be categorized as mechanosensitive in a broad sense. We anticipate that the impact of nano-precision approaches in mechanobiology research will continue to grow in the future.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1056373, No. 2021R1A4A1031754, and No. 2021R1C1C2009717).

References

  1. Arbore, C., Perego, L., Sergides, M., and Capitanio, M. (2019). Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys. Rev. 11, 765-782. https://doi.org/10.1007/s12551-019-00599-y
  2. Arya, M., Anvari, B., Romo, G.M., Cruz, M.A., Dong, J.F., McIntire, L.V., Moake, J.L., and Lopez, J.A. (2002). Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood 99, 3971-3977. https://doi.org/10.1182/blood-2001-11-0060
  3. Austen, K., Ringer, P., Mehlich, A., Chrostek-Grashoff, A., Kluger, C., Klingner, C., Sabass, B., Zent, R., Rief, M., and Grashoff, C. (2015). Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597-1606. https://doi.org/10.1038/ncb3268
  4. Brunger, A.T., Choi, U.B., Lai, Y., Leitz, J., and Zhou, Q. (2018). Molecular mechanisms of fast neurotransmitter release. Annu. Rev. Biophys. 47, 469-497. https://doi.org/10.1146/annurev-biophys-070816-034117
  5. Buckley, C.D., Tan, J., Anderson, K.L., Hanein, D., Volkmann, N., Weis, W.I., Nelson, W.J., and Dunn, A.R. (2014). Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346, 1254211. https://doi.org/10.1126/science.1254211
  6. Bustamante, C.J., Chemla, Y.R., Liu, S., and Wang, M.D. (2021). Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Primers 1, 25. https://doi.org/10.1038/s43586-021-00021-6
  7. Bykhovskaia, M., Jagota, A., Gonzalez, A., Vasin, A., and Littleton, J.T. (2013). Interaction of the complexin accessory helix with the C-terminus of the SNARE complex: molecular-dynamics model of the fusion clamp. Biophys. J. 105, 679-690. https://doi.org/10.1016/j.bpj.2013.06.018
  8. Chen, H., Yuan, G., Winardhi, R.S., Yao, M., Popa, I., Fernandez, J.M., and Yan, J. (2015). Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces. J. Am. Chem. Soc. 137, 3540-3546. https://doi.org/10.1021/ja5119368
  9. Chen, Y., Ju, L., Rushdi, M., Ge, C., and Zhu, C. (2017). Receptor-mediated cell mechanosensing. Mol. Biol. Cell 28, 3134-3155. https://doi.org/10.1091/mbc.E17-04-0228
  10. Cheng, Y. (2018). Single-particle cryo-EM-how did it get here and where will it go. Science 361, 876-880. https://doi.org/10.1126/science.aat4346
  11. Choi, U.B., Zhao, M., Zhang, Y., Lai, Y., and Brunger, A.T. (2016). Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex. Elife 5, e16886. https://doi.org/10.7554/elife.16886
  12. Cox, C.D., Bae, C., Ziegler, L., Hartley, S., Nikolova-Krstevski, V., Rohde, P.R., Ng, C.A., Sachs, F., Gottlieb, P.A., and Martinac, B. (2016). Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat. Commun. 7, 10366. https://doi.org/10.1038/ncomms10366
  13. De Vlaminck, I. and Dekker, C. (2012). Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453-472. https://doi.org/10.1146/annurev-biophys-122311-100544
  14. del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J.M., and Sheetz, M.P. (2009). Stretching single talin rod molecules activates vinculin binding. Science 323, 638-641. https://doi.org/10.1126/science.1162912
  15. Dulin, D., Cui, T.J., Cnossen, J., Docter, M.W., Lipfert, J., and Dekker, N.H. (2015). High spatiotemporal-resolution magnetic tweezers: calibration and applications for DNA dynamics. Biophys. J. 109, 2113-2125. https://doi.org/10.1016/j.bpj.2015.10.018
  16. Falleroni, F., Torre, V., and Cojoc, D. (2018). Cell mechanotransduction with piconewton forces applied by optical tweezers. Front. Cell. Neurosci. 12, 130. https://doi.org/10.3389/fncel.2018.00130
  17. Ferrer, J.M., Lee, H., Chen, J., Pelz, B., Nakamura, F., Kamm, R.D., and Lang, M.J. (2008). Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 105, 9221-9226. https://doi.org/10.1073/pnas.0706124105
  18. Gao, Y., Zorman, S., Gundersen, G., Xi, Z., Ma, L., Sirinakis, G., Rothman, J.E., and Zhang, Y. (2012). Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337, 1340-1343. https://doi.org/10.1126/science.1224492
  19. Gordon, W.R., Vardar-Ulu, D., Histen, G., Sanchez-Irizarry, C., Aster, J.C., and Blacklow, S.C. (2007). Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol. 14, 295-300. https://doi.org/10.1038/nsmb1227
  20. Gordon, W.R., Zimmerman, B., He, L., Miles, L.J., Huang, J., Tiyanont, K., McArthur, D.G., Aster, J.C., Perrimon, N., Loparo, J.J., et al. (2015). Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729-736. https://doi.org/10.1016/j.devcel.2015.05.004
  21. Goult, B.T., Yan, J., and Schwartz, M.A. (2018). Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776-3784. https://doi.org/10.1083/jcb.201808061
  22. Grison, M., Merkel, U., Kostan, J., Djinovic-Carugo, K., and Rief, M. (2017). α-Actinin/titin interaction: a dynamic and mechanically stable cluster of bonds in the muscle Z-disk. Proc. Natl. Acad. Sci. U. S. A. 114, 1015-1020. https://doi.org/10.1073/pnas.1612681114
  23. Guo, Y.R. and MacKinnon, R. (2017). Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife 6, e33660. https://doi.org/10.7554/elife.33660
  24. Hu, X., Margadant, F.M., Yao, M., and Sheetz, M.P. (2017). Molecular stretching modulates mechanosensing pathways. Protein Sci. 26, 1337-1351. https://doi.org/10.1002/pro.3188
  25. Huang, D.L., Bax, N.A., Buckley, C.D., Weis, W.I., and Dunn, A.R. (2017). Vinculin forms a directionally asymmetric catch bond with F-actin. Science 357, 703-706. https://doi.org/10.1126/science.aan2556
  26. Hughes, M.L. and Dougan, L. (2016). The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. Rep. Prog. Phys. 79, 076601. https://doi.org/10.1088/0034-4885/79/7/076601
  27. Huhle, A., Klaue, D., Brutzer, H., Daldrop, P., Joo, S., Otto, O., Keyser, U.F., and Seidel, R. (2015). Camera-based three-dimensional real-time particle tracking at kHz rates and Angstrom accuracy. Nat. Commun. 6, 5885. https://doi.org/10.1038/ncomms6885
  28. Huntwork, S. and Littleton, J.T. (2007). A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10, 1235-1237. https://doi.org/10.1038/nn1980
  29. Ibata, N. and Terentjev, E.M. (2021). Why exercise builds muscles: titin mechanosensing controls skeletal muscle growth under load. Biophys. J. 120, 3649-3663. https://doi.org/10.1016/j.bpj.2021.07.023
  30. Ingber, D.E. (2006). Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811-827. https://doi.org/10.1096/fj.05-5424rev
  31. Iskratsch, T., Wolfenson, H., and Sheetz, M.P. (2014). Appreciating force and shape - the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825-833. https://doi.org/10.1038/nrm3903
  32. Jiang, G., Giannone, G., Critchley, D.R., Fukumoto, E., and Sheetz, M.P. (2003). Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334-337. https://doi.org/10.1038/nature01805
  33. Jiao, J., He, M., Port, S.A., Baker, R.W., Xu, Y., Qu, H., Xiong, Y., Wang, Y., Jin, H., Eisemann, T.J., et al. (2018). Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association. Elife 7, e41771. https://doi.org/10.7554/elife.41771
  34. Jin, P., Jan, L.Y., and Jan, Y.N. (2020). Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms. Annu. Rev. Neurosci. 43, 207-229. https://doi.org/10.1146/annurev-neuro-070918-050509
  35. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2
  36. Kalyana Sundaram, R.V., Jin, H., Li, F., Shu, T., Coleman, J., Yang, J., Pincet, F., Zhang, Y., Rothman, J.E., and Krishnakumar, S.S. (2021). Munc13 binds and recruits SNAP25 to chaperone SNARE complex assembly. FEBS Lett. 595, 297-309. https://doi.org/10.1002/1873-3468.14006
  37. Kanchanawong, P., Shtengel, G., Pasapera, A.M., Ramko, E.B., Davidson, M.W., Hess, H.F., and Waterman, C.M. (2010). Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580-584. https://doi.org/10.1038/nature09621
  38. Kellermayer, M.S.Z., Smith, S.B., Granzier, H.L., and Bustamante, C. (1997). Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112-1116. https://doi.org/10.1126/science.276.5315.1112
  39. Kim, C., Shon, M.J., Kim, S.H., Eun, G.S., Ryu, J.K., Hyeon, C., Jahn, R., and Yoon, T.Y. (2021). Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes. Nat. Commun. 12, 3206. https://doi.org/10.1038/s41467-021-23530-0
  40. Kim, J., Hudson, N.E., and Springer, T.A. (2015). Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases. Proc. Natl. Acad. Sci. U. S. A. 112, 4648-4653. https://doi.org/10.1073/pnas.1501689112
  41. Kim, J., Zhang, C.Z., Zhang, X., and Springer, T.A. (2010). A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 466, 992-995. https://doi.org/10.1038/nature09295
  42. Kostrz, D., Wayment-Steele, H.K., Wang, J.L., Follenfant, M., Pande, V.S., Strick, T.R., and Gosse, C. (2019). A modular DNA scaffold to study protein-protein interactions at single-molecule resolution. Nat. Nanotechnol. 14, 988-993. https://doi.org/10.1038/s41565-019-0542-7
  43. Krieg, M., Flaschner, G., Alsteens, D., Gaub, B.M., Roos, W.H., Wuite, G.J.L., Gaub, H.E., Gerber, C., Dufrene, Y.F., and Muller, D.J. (2019). Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41-57. https://doi.org/10.1038/s42254-018-0001-7
  44. Labeit, S. and Kolmerer, B. (1995). Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293-296. https://doi.org/10.1126/science.270.5234.293
  45. Lansdorp, B.M., Tabrizi, S.J., Dittmore, A., and Saleh, O.A. (2013). A high-speed magnetic tweezer beyond 10,000 frames per second. Rev. Sci. Instrum. 84, 044301. https://doi.org/10.1063/1.4802678
  46. Le, S., Hu, X., Yao, M., Chen, H., Yu, M., Xu, X., Nakazawa, N., Margadant, F.M., Sheetz, M.P., and Yan, J. (2017). Mechanotransmission and mechanosensing of human alpha-actinin 1. Cell Rep. 21, 2714-2723. https://doi.org/10.1016/j.celrep.2017.11.040
  47. Lee, G., Abdi, K., Jiang, Y., Michaely, P., Bennett, V., and Marszalek, P.E. (2006). Nanospring behaviour of ankyrin repeats. Nature 440, 246-249. https://doi.org/10.1038/nature04437
  48. Lee, H., Pelz, B., Ferrer, J.M., Kim, T., Lang, M.J., and Kamm, R.D. (2009). Cytoskeletal deformation at high strains and the role of cross-link unfolding or unbinding. Cell. Mol. Bioeng. 2, 28-38. https://doi.org/10.1007/s12195-009-0048-8
  49. Lee, J., Shin, W., Lim, Y., Kim, J., Kim, W.R., Kim, H., Lee, J.H., and Cheon, J. (2021). Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20, 1029-1036. https://doi.org/10.1038/s41563-020-00896-y
  50. Li, F., Pincet, F., Perez, E., Eng, W.S., Melia, T.J., Rothman, J.E., and Tareste, D. (2007). Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14, 890-896. https://doi.org/10.1038/nsmb1310
  51. Lin, Y.C., Guo, Y.R., Miyagi, A., Levring, J., MacKinnon, R., and Scheuring, S. (2019). Force-induced conformational changes in PIEZO1. Nature 573, 230-234. https://doi.org/10.1038/s41586-019-1499-2
  52. Liu, B., Chen, W., and Zhu, C. (2015a). Molecular force spectroscopy on cells. Annu. Rev. Phys. Chem. 66, 427-451. https://doi.org/10.1146/annurev-physchem-040214-121742
  53. Liu, J., Wang, Y., Goh, W.I., Goh, H., Baird, M.A., Ruehland, S., Teo, S., Bate, N., Critchley, D.R., Davidson, M.W., et al. (2015b). Talin determines the nanoscale architecture of focal adhesions. Proc. Natl. Acad. Sci. U. S. A. 112, E4864-E4873.
  54. Luca, V.C., Kim, B.C., Ge, C., Kakuda, S., Wu, D., Roein-Peikar, M., Haltiwanger, R.S., Zhu, C., Ha, T., and Garcia, K.C. (2017). Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355, 1320-1324. https://doi.org/10.1126/science.aaf9739
  55. Ma, C., Su, L., Seven, A.B., Xu, Y., and Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339, 421-425. https://doi.org/10.1126/science.1230473
  56. Ma, L., Cai, Y., Li, Y., Jiao, J., Wu, Z., O'Shaughnessy, B., De Camilli, P., Karatekin, E., and Zhang, Y. (2017). Single-molecule force spectroscopy of protein-membrane interactions. Elife 6, e30493. https://doi.org/10.7554/elife.30493
  57. Ma, L., Kang, Y., Jiao, J., Rebane, A.A., Cha, H.K., Xi, Z., Qu, H., and Zhang, Y. (2016). α-SNAP enhances SNARE zippering by stabilizing the SNARE four-helix bundle. Cell Rep. 15, 531-539. https://doi.org/10.1016/j.celrep.2016.03.050
  58. Maciuba, K., Zhang, F., and Kaiser, C.M. (2021). Facile tethering of stable and unstable proteins for optical tweezers experiments. Biophys. J. 120, 2691-2700. https://doi.org/10.1016/j.bpj.2021.05.003
  59. Margadant, F., Chew, L.L., Hu, X., Yu, H., Bate, N., Zhang, X., and Sheetz, M. (2011). Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9, e1001223. https://doi.org/10.1371/journal.pbio.1001223
  60. Marszalek, P.E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A.F., Schulten, K., and Fernandez, J.M. (1999). Mechanical unfolding intermediates in titin modules. Nature 402, 100-103. https://doi.org/10.1038/47083
  61. Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E., and Weinmaster, G. (2012). Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 22, 1299-1312. https://doi.org/10.1016/j.devcel.2012.04.005
  62. Min, D., Kim, K., Hyeon, C., Cho, Y.H., Shin, Y.K., and Yoon, T.Y. (2013). Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat. Commun. 4, 1705. https://doi.org/10.1038/ncomms2692
  63. Mohammed, D., Versaevel, M., Bruyere, C., Alaimo, L., Luciano, M., Vercruysse, E., Proces, A., and Gabriele, S. (2019). Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Front. Bioeng. Biotechnol. 7, 162. https://doi.org/10.3389/fbioe.2019.00162
  64. Neuman, K.C. and Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491-505. https://doi.org/10.1038/nmeth.1218
  65. Pang, S.M., Le, S., and Yan, J. (2018). Mechanical responses of the mechanosensitive unstructured domains in cardiac titin. Biol. Cell 110, 65-76. https://doi.org/10.1111/boc.201700061
  66. Parks, A.L., Klueg, K.M., Stout, J.R., and Muskavitch, M.A. (2000). Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373-1385. https://doi.org/10.1242/dev.127.7.1373
  67. Pobbati, A.V., Stein, A., and Fasshauer, D. (2006). N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313, 673-676. https://doi.org/10.1126/science.1129486
  68. Puchner, E.M., Alexandrovich, A., Kho, A.L., Hensen, U., Schafer, L.V., Brandmeier, B., Grater, F., Grubmuller, H., Gaub, H.E., and Gautel, M. (2008). Mechanoenzymatics of titin kinase. Proc. Natl. Acad. Sci. U. S. A. 105, 13385-13390. https://doi.org/10.1073/pnas.0805034105
  69. Reim, K., Mansour, M., Varoqueaux, F., McMahon, H.T., Sudhof, T.C., Brose, N., and Rosenmund, C. (2001). Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71-81. https://doi.org/10.1016/S0092-8674(01)00192-1
  70. Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M., and Scheuring, S. (2013). High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science 342, 741-743. https://doi.org/10.1126/science.1239764
  71. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., and Gaub, H.E. (1997). Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109-1112. https://doi.org/10.1126/science.276.5315.1109
  72. Roca-Cusachs, P., del Rio, A., Puklin-Faucher, E., Gauthier, N.C., Biais, N., and Sheetz, M.P. (2013). Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proc. Natl. Acad. Sci. U. S. A. 110, E1361-E1370.
  73. Ruggeri, Z.M. and Mendolicchio, G.L. (2007). Adhesion mechanisms in platelet function. Circ. Res. 100, 1673-1685. https://doi.org/10.1161/01.RES.0000267878.97021.ab
  74. Ryu, J.K., Min, D., Rah, S.H., Kim, S.J., Park, Y., Kim, H., Hyeon, C., Kim, H.M., Jahn, R., and Yoon, T.Y. (2015). Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover. Science 347, 1485-1489. https://doi.org/10.1126/science.aaa5267
  75. Saotome, K., Murthy, S.E., Kefauver, J.M., Whitwam, T., Patapoutian, A., and Ward, A.B. (2018). Structure of the mechanically activated ion channel Piezo1. Nature 554, 481-486. https://doi.org/10.1038/nature25453
  76. Shergill, B., Meloty-Kapella, L., Musse, A.A., Weinmaster, G., and Botvinick, E. (2012). Optical tweezers studies on Notch: single-molecule interaction strength is independent of ligand endocytosis. Dev. Cell 22, 1313-1320. https://doi.org/10.1016/j.devcel.2012.04.007
  77. Shi, Z., Graber, Z.T., Baumgart, T., Stone, H.A., and Cohen, A.E. (2018). Cell membranes resist flow. Cell 175, 1769-1779.e13. https://doi.org/10.1016/j.cell.2018.09.054
  78. Shon, M.J., Kim, H., and Yoon, T.Y. (2018). Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension. Nat. Commun. 9, 3639. https://doi.org/10.1038/s41467-018-06122-3
  79. Shon, M.J., Rah, S.H., and Yoon, T.Y. (2019). Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Sci. Adv. 5, eaav1697. https://doi.org/10.1126/sciadv.aav1697
  80. Shu, T., Jin, H., Rothman, J.E., and Zhang, Y. (2020). Munc13-1 MUN domain and Munc18-1 cooperatively chaperone SNARE assembly through a tetrameric complex. Proc. Natl. Acad. Sci. U. S. A. 117, 1036-1041. https://doi.org/10.1073/pnas.1914361117
  81. Siebel, C. and Lendahl, U. (2017). Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev. 97, 1235-1294. https://doi.org/10.1152/physrev.00005.2017
  82. Sollner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J.E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318-324. https://doi.org/10.1038/362318a0
  83. Sotomayor, M., Corey, D.P., and Schulten, K. (2005). In search of the hair-cell gating spring: elastic properties of ankyrin and cadherin repeats. Structure 13, 669-682. https://doi.org/10.1016/j.str.2005.03.001
  84. Stephenson, N.L. and Avis, J.M. (2012). Direct observation of proteolytic cleavage at the S2 site upon forced unfolding of the Notch negative regulatory region. Proc. Natl. Acad. Sci. U. S. A. 109, E2757-E2765.
  85. Sudhof, T.C. (2004). The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509-547. https://doi.org/10.1146/annurev.neuro.26.041002.131412
  86. Sudhof, T.C. (2013). Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675-690. https://doi.org/10.1016/j.neuron.2013.10.022
  87. Sutton, R.B., Fasshauer, D., Jahn, R., and Brunger, A.T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347-353. https://doi.org/10.1038/26412
  88. Tapia-Rojo, R., Eckels, E.C., and Fernandez, J.M. (2019). Ephemeral states in protein folding under force captured with a magnetic tweezers design. Proc. Natl. Acad. Sci. U. S. A. 116, 7873-7878. https://doi.org/10.1073/pnas.1821284116
  89. Trimbuch, T. and Rosenmund, C. (2016). Should I stop or should I go? The role of complexin in neurotransmitter release. Nat. Rev. Neurosci. 17, 118-125. https://doi.org/10.1038/nrn.2015.16
  90. Wang, X. and Ha, T. (2013). Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991-994. https://doi.org/10.1126/science.1231041
  91. Wang, Y., Yao, M., Baker, K.B., Gough, R.E., Le, S., Goult, B.T., and Yan, J. (2021). Force-dependent interactions between talin and full-length vinculin. J. Am. Chem. Soc. 143, 14726-14737. https://doi.org/10.1021/jacs.1c06223
  92. Wu, J., Goyal, R., and Grandl, J. (2016). Localized force application reveals mechanically sensitive domains of Piezo1. Nat. Commun. 7, 12939. https://doi.org/10.1038/ncomms12939
  93. Xue, M., Reim, K., Chen, X., Chao, H.T., Deng, H., Rizo, J., Brose, N., and Rosenmund, C. (2007). Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14, 949-958. https://doi.org/10.1038/nsmb1292
  94. Yago, T., Lou, J., Wu, T., Yang, J., Miner, J.J., Coburn, L., Lopez, J.A., Cruz, M.A., Dong, J.F., McIntire, L.V., et al. (2008). Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest. 118, 3195-3207. https://doi.org/10.1172/JCI35754
  95. Yang, B., Liu, Z., Liu, H., and Nash, M.A. (2020). Next generation methods for single-molecule force spectroscopy on polyproteins and receptor-ligand complexes. Front. Mol. Biosci. 7, 85. https://doi.org/10.3389/fmolb.2020.00085
  96. Yao, M., Goult, B.T., Klapholz, B., Hu, X., Toseland, C.P., Guo, Y., Cong, P., Sheetz, M.P., and Yan, J. (2016). The mechanical response of talin. Nat. Commun. 7, 11966. https://doi.org/10.1038/ncomms11966
  97. Yao, M., Qiu, W., Liu, R., Efremov, A.K., Cong, P., Seddiki, R., Payre, M., Lim, C.T., Ladoux, B., Mege, R.M., et al. (2014). Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun. 5, 4525. https://doi.org/10.1038/ncomms5525
  98. Yersin, A., Hirling, H., Steiner, P., Magnin, S., Regazzi, R., Huni, B., Huguenot, P., Rios, P.D.L., Dietler, G., Catsicas, S., et al. (2003). Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proc. Natl. Acad. Sci. U. S. A. 100, 8736-8741. https://doi.org/10.1073/pnas.1533137100
  99. Yoon, T.Y., Lu, X., Diao, J., Lee, S.M., Ha, T., and Shin, Y.K. (2008). Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 15, 707-713. https://doi.org/10.1038/nsmb.1446
  100. Yoon, T.Y. and Munson, M. (2018). SNARE complex assembly and disassembly. Curr. Biol. 28, R397-R401. https://doi.org/10.1016/j.cub.2018.01.005
  101. Zhang, W., Cheng, L.E., Kittelmann, M., Li, J., Petkovic, M., Cheng, T., Jin, P., Guo, Z., Gopfert, M.C., Jan, L.Y., et al. (2015). Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162, 1391-1403. https://doi.org/10.1016/j.cell.2015.08.024
  102. Zhang, X., Halvorsen, K., Zhang, C.Z., Wong, W.P., and Springer, T.A. (2009). Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324, 1330-1334. https://doi.org/10.1126/science.1170905
  103. Zhang, X., Rebane, A.A., Ma, L., Li, F., Jiao, J., Qu, H., Pincet, F., Rothman, J.E., and Zhang, Y. (2016). Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex. Proc. Natl. Acad. Sci. U. S. A. 113, E8031-E8040.
  104. Zhang, Y. (2017). Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci. 26, 1252-1265. https://doi.org/10.1002/pro.3116
  105. Zhang, Y. and Hughson, F.M. (2021). Chaperoning SNARE folding and assembly. Annu. Rev. Biochem. 90, 581-603. https://doi.org/10.1146/annurev-biochem-081820-103615
  106. Zhou, Q., Zhou, P., Wang, A.L., Wu, D., Zhao, M., Sudhof, T.C., and Brunger, A.T. (2017). The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis. Nature 548, 420-425. https://doi.org/10.1038/nature23484
  107. Zhu, C. (2014). Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann. Biomed. Eng. 42, 388-404. https://doi.org/10.1007/s10439-013-0904-5
  108. Zorman, S., Rebane, A.A., Ma, L., Yang, G., Molski, M.A., Coleman, J., Pincet, F., Rothman, J.E., and Zhang, Y. (2014). Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. Elife 3, e03348. https://doi.org/10.7554/elife.03348