Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1056373, No. 2021R1A4A1031754, and No. 2021R1C1C2009717).
References
- Arbore, C., Perego, L., Sergides, M., and Capitanio, M. (2019). Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys. Rev. 11, 765-782. https://doi.org/10.1007/s12551-019-00599-y
- Arya, M., Anvari, B., Romo, G.M., Cruz, M.A., Dong, J.F., McIntire, L.V., Moake, J.L., and Lopez, J.A. (2002). Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers. Blood 99, 3971-3977. https://doi.org/10.1182/blood-2001-11-0060
- Austen, K., Ringer, P., Mehlich, A., Chrostek-Grashoff, A., Kluger, C., Klingner, C., Sabass, B., Zent, R., Rief, M., and Grashoff, C. (2015). Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597-1606. https://doi.org/10.1038/ncb3268
- Brunger, A.T., Choi, U.B., Lai, Y., Leitz, J., and Zhou, Q. (2018). Molecular mechanisms of fast neurotransmitter release. Annu. Rev. Biophys. 47, 469-497. https://doi.org/10.1146/annurev-biophys-070816-034117
- Buckley, C.D., Tan, J., Anderson, K.L., Hanein, D., Volkmann, N., Weis, W.I., Nelson, W.J., and Dunn, A.R. (2014). Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346, 1254211. https://doi.org/10.1126/science.1254211
- Bustamante, C.J., Chemla, Y.R., Liu, S., and Wang, M.D. (2021). Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Primers 1, 25. https://doi.org/10.1038/s43586-021-00021-6
- Bykhovskaia, M., Jagota, A., Gonzalez, A., Vasin, A., and Littleton, J.T. (2013). Interaction of the complexin accessory helix with the C-terminus of the SNARE complex: molecular-dynamics model of the fusion clamp. Biophys. J. 105, 679-690. https://doi.org/10.1016/j.bpj.2013.06.018
- Chen, H., Yuan, G., Winardhi, R.S., Yao, M., Popa, I., Fernandez, J.M., and Yan, J. (2015). Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces. J. Am. Chem. Soc. 137, 3540-3546. https://doi.org/10.1021/ja5119368
- Chen, Y., Ju, L., Rushdi, M., Ge, C., and Zhu, C. (2017). Receptor-mediated cell mechanosensing. Mol. Biol. Cell 28, 3134-3155. https://doi.org/10.1091/mbc.E17-04-0228
- Cheng, Y. (2018). Single-particle cryo-EM-how did it get here and where will it go. Science 361, 876-880. https://doi.org/10.1126/science.aat4346
- Choi, U.B., Zhao, M., Zhang, Y., Lai, Y., and Brunger, A.T. (2016). Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex. Elife 5, e16886. https://doi.org/10.7554/elife.16886
- Cox, C.D., Bae, C., Ziegler, L., Hartley, S., Nikolova-Krstevski, V., Rohde, P.R., Ng, C.A., Sachs, F., Gottlieb, P.A., and Martinac, B. (2016). Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat. Commun. 7, 10366. https://doi.org/10.1038/ncomms10366
- De Vlaminck, I. and Dekker, C. (2012). Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41, 453-472. https://doi.org/10.1146/annurev-biophys-122311-100544
- del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J.M., and Sheetz, M.P. (2009). Stretching single talin rod molecules activates vinculin binding. Science 323, 638-641. https://doi.org/10.1126/science.1162912
- Dulin, D., Cui, T.J., Cnossen, J., Docter, M.W., Lipfert, J., and Dekker, N.H. (2015). High spatiotemporal-resolution magnetic tweezers: calibration and applications for DNA dynamics. Biophys. J. 109, 2113-2125. https://doi.org/10.1016/j.bpj.2015.10.018
- Falleroni, F., Torre, V., and Cojoc, D. (2018). Cell mechanotransduction with piconewton forces applied by optical tweezers. Front. Cell. Neurosci. 12, 130. https://doi.org/10.3389/fncel.2018.00130
- Ferrer, J.M., Lee, H., Chen, J., Pelz, B., Nakamura, F., Kamm, R.D., and Lang, M.J. (2008). Measuring molecular rupture forces between single actin filaments and actin-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 105, 9221-9226. https://doi.org/10.1073/pnas.0706124105
- Gao, Y., Zorman, S., Gundersen, G., Xi, Z., Ma, L., Sirinakis, G., Rothman, J.E., and Zhang, Y. (2012). Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337, 1340-1343. https://doi.org/10.1126/science.1224492
- Gordon, W.R., Vardar-Ulu, D., Histen, G., Sanchez-Irizarry, C., Aster, J.C., and Blacklow, S.C. (2007). Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol. 14, 295-300. https://doi.org/10.1038/nsmb1227
- Gordon, W.R., Zimmerman, B., He, L., Miles, L.J., Huang, J., Tiyanont, K., McArthur, D.G., Aster, J.C., Perrimon, N., Loparo, J.J., et al. (2015). Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell 33, 729-736. https://doi.org/10.1016/j.devcel.2015.05.004
- Goult, B.T., Yan, J., and Schwartz, M.A. (2018). Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776-3784. https://doi.org/10.1083/jcb.201808061
- Grison, M., Merkel, U., Kostan, J., Djinovic-Carugo, K., and Rief, M. (2017). α-Actinin/titin interaction: a dynamic and mechanically stable cluster of bonds in the muscle Z-disk. Proc. Natl. Acad. Sci. U. S. A. 114, 1015-1020. https://doi.org/10.1073/pnas.1612681114
- Guo, Y.R. and MacKinnon, R. (2017). Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife 6, e33660. https://doi.org/10.7554/elife.33660
- Hu, X., Margadant, F.M., Yao, M., and Sheetz, M.P. (2017). Molecular stretching modulates mechanosensing pathways. Protein Sci. 26, 1337-1351. https://doi.org/10.1002/pro.3188
- Huang, D.L., Bax, N.A., Buckley, C.D., Weis, W.I., and Dunn, A.R. (2017). Vinculin forms a directionally asymmetric catch bond with F-actin. Science 357, 703-706. https://doi.org/10.1126/science.aan2556
- Hughes, M.L. and Dougan, L. (2016). The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. Rep. Prog. Phys. 79, 076601. https://doi.org/10.1088/0034-4885/79/7/076601
- Huhle, A., Klaue, D., Brutzer, H., Daldrop, P., Joo, S., Otto, O., Keyser, U.F., and Seidel, R. (2015). Camera-based three-dimensional real-time particle tracking at kHz rates and Angstrom accuracy. Nat. Commun. 6, 5885. https://doi.org/10.1038/ncomms6885
- Huntwork, S. and Littleton, J.T. (2007). A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10, 1235-1237. https://doi.org/10.1038/nn1980
- Ibata, N. and Terentjev, E.M. (2021). Why exercise builds muscles: titin mechanosensing controls skeletal muscle growth under load. Biophys. J. 120, 3649-3663. https://doi.org/10.1016/j.bpj.2021.07.023
- Ingber, D.E. (2006). Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811-827. https://doi.org/10.1096/fj.05-5424rev
- Iskratsch, T., Wolfenson, H., and Sheetz, M.P. (2014). Appreciating force and shape - the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15, 825-833. https://doi.org/10.1038/nrm3903
- Jiang, G., Giannone, G., Critchley, D.R., Fukumoto, E., and Sheetz, M.P. (2003). Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334-337. https://doi.org/10.1038/nature01805
- Jiao, J., He, M., Port, S.A., Baker, R.W., Xu, Y., Qu, H., Xiong, Y., Wang, Y., Jin, H., Eisemann, T.J., et al. (2018). Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association. Elife 7, e41771. https://doi.org/10.7554/elife.41771
- Jin, P., Jan, L.Y., and Jan, Y.N. (2020). Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms. Annu. Rev. Neurosci. 43, 207-229. https://doi.org/10.1146/annurev-neuro-070918-050509
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2
- Kalyana Sundaram, R.V., Jin, H., Li, F., Shu, T., Coleman, J., Yang, J., Pincet, F., Zhang, Y., Rothman, J.E., and Krishnakumar, S.S. (2021). Munc13 binds and recruits SNAP25 to chaperone SNARE complex assembly. FEBS Lett. 595, 297-309. https://doi.org/10.1002/1873-3468.14006
- Kanchanawong, P., Shtengel, G., Pasapera, A.M., Ramko, E.B., Davidson, M.W., Hess, H.F., and Waterman, C.M. (2010). Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580-584. https://doi.org/10.1038/nature09621
- Kellermayer, M.S.Z., Smith, S.B., Granzier, H.L., and Bustamante, C. (1997). Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112-1116. https://doi.org/10.1126/science.276.5315.1112
- Kim, C., Shon, M.J., Kim, S.H., Eun, G.S., Ryu, J.K., Hyeon, C., Jahn, R., and Yoon, T.Y. (2021). Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes. Nat. Commun. 12, 3206. https://doi.org/10.1038/s41467-021-23530-0
- Kim, J., Hudson, N.E., and Springer, T.A. (2015). Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases. Proc. Natl. Acad. Sci. U. S. A. 112, 4648-4653. https://doi.org/10.1073/pnas.1501689112
- Kim, J., Zhang, C.Z., Zhang, X., and Springer, T.A. (2010). A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 466, 992-995. https://doi.org/10.1038/nature09295
- Kostrz, D., Wayment-Steele, H.K., Wang, J.L., Follenfant, M., Pande, V.S., Strick, T.R., and Gosse, C. (2019). A modular DNA scaffold to study protein-protein interactions at single-molecule resolution. Nat. Nanotechnol. 14, 988-993. https://doi.org/10.1038/s41565-019-0542-7
- Krieg, M., Flaschner, G., Alsteens, D., Gaub, B.M., Roos, W.H., Wuite, G.J.L., Gaub, H.E., Gerber, C., Dufrene, Y.F., and Muller, D.J. (2019). Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41-57. https://doi.org/10.1038/s42254-018-0001-7
- Labeit, S. and Kolmerer, B. (1995). Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293-296. https://doi.org/10.1126/science.270.5234.293
- Lansdorp, B.M., Tabrizi, S.J., Dittmore, A., and Saleh, O.A. (2013). A high-speed magnetic tweezer beyond 10,000 frames per second. Rev. Sci. Instrum. 84, 044301. https://doi.org/10.1063/1.4802678
- Le, S., Hu, X., Yao, M., Chen, H., Yu, M., Xu, X., Nakazawa, N., Margadant, F.M., Sheetz, M.P., and Yan, J. (2017). Mechanotransmission and mechanosensing of human alpha-actinin 1. Cell Rep. 21, 2714-2723. https://doi.org/10.1016/j.celrep.2017.11.040
- Lee, G., Abdi, K., Jiang, Y., Michaely, P., Bennett, V., and Marszalek, P.E. (2006). Nanospring behaviour of ankyrin repeats. Nature 440, 246-249. https://doi.org/10.1038/nature04437
- Lee, H., Pelz, B., Ferrer, J.M., Kim, T., Lang, M.J., and Kamm, R.D. (2009). Cytoskeletal deformation at high strains and the role of cross-link unfolding or unbinding. Cell. Mol. Bioeng. 2, 28-38. https://doi.org/10.1007/s12195-009-0048-8
- Lee, J., Shin, W., Lim, Y., Kim, J., Kim, W.R., Kim, H., Lee, J.H., and Cheon, J. (2021). Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20, 1029-1036. https://doi.org/10.1038/s41563-020-00896-y
- Li, F., Pincet, F., Perez, E., Eng, W.S., Melia, T.J., Rothman, J.E., and Tareste, D. (2007). Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14, 890-896. https://doi.org/10.1038/nsmb1310
- Lin, Y.C., Guo, Y.R., Miyagi, A., Levring, J., MacKinnon, R., and Scheuring, S. (2019). Force-induced conformational changes in PIEZO1. Nature 573, 230-234. https://doi.org/10.1038/s41586-019-1499-2
- Liu, B., Chen, W., and Zhu, C. (2015a). Molecular force spectroscopy on cells. Annu. Rev. Phys. Chem. 66, 427-451. https://doi.org/10.1146/annurev-physchem-040214-121742
- Liu, J., Wang, Y., Goh, W.I., Goh, H., Baird, M.A., Ruehland, S., Teo, S., Bate, N., Critchley, D.R., Davidson, M.W., et al. (2015b). Talin determines the nanoscale architecture of focal adhesions. Proc. Natl. Acad. Sci. U. S. A. 112, E4864-E4873.
- Luca, V.C., Kim, B.C., Ge, C., Kakuda, S., Wu, D., Roein-Peikar, M., Haltiwanger, R.S., Zhu, C., Ha, T., and Garcia, K.C. (2017). Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355, 1320-1324. https://doi.org/10.1126/science.aaf9739
- Ma, C., Su, L., Seven, A.B., Xu, Y., and Rizo, J. (2013). Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339, 421-425. https://doi.org/10.1126/science.1230473
- Ma, L., Cai, Y., Li, Y., Jiao, J., Wu, Z., O'Shaughnessy, B., De Camilli, P., Karatekin, E., and Zhang, Y. (2017). Single-molecule force spectroscopy of protein-membrane interactions. Elife 6, e30493. https://doi.org/10.7554/elife.30493
- Ma, L., Kang, Y., Jiao, J., Rebane, A.A., Cha, H.K., Xi, Z., Qu, H., and Zhang, Y. (2016). α-SNAP enhances SNARE zippering by stabilizing the SNARE four-helix bundle. Cell Rep. 15, 531-539. https://doi.org/10.1016/j.celrep.2016.03.050
- Maciuba, K., Zhang, F., and Kaiser, C.M. (2021). Facile tethering of stable and unstable proteins for optical tweezers experiments. Biophys. J. 120, 2691-2700. https://doi.org/10.1016/j.bpj.2021.05.003
- Margadant, F., Chew, L.L., Hu, X., Yu, H., Bate, N., Zhang, X., and Sheetz, M. (2011). Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9, e1001223. https://doi.org/10.1371/journal.pbio.1001223
- Marszalek, P.E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A.F., Schulten, K., and Fernandez, J.M. (1999). Mechanical unfolding intermediates in titin modules. Nature 402, 100-103. https://doi.org/10.1038/47083
- Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E., and Weinmaster, G. (2012). Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell 22, 1299-1312. https://doi.org/10.1016/j.devcel.2012.04.005
- Min, D., Kim, K., Hyeon, C., Cho, Y.H., Shin, Y.K., and Yoon, T.Y. (2013). Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat. Commun. 4, 1705. https://doi.org/10.1038/ncomms2692
- Mohammed, D., Versaevel, M., Bruyere, C., Alaimo, L., Luciano, M., Vercruysse, E., Proces, A., and Gabriele, S. (2019). Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Front. Bioeng. Biotechnol. 7, 162. https://doi.org/10.3389/fbioe.2019.00162
- Neuman, K.C. and Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491-505. https://doi.org/10.1038/nmeth.1218
- Pang, S.M., Le, S., and Yan, J. (2018). Mechanical responses of the mechanosensitive unstructured domains in cardiac titin. Biol. Cell 110, 65-76. https://doi.org/10.1111/boc.201700061
- Parks, A.L., Klueg, K.M., Stout, J.R., and Muskavitch, M.A. (2000). Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373-1385. https://doi.org/10.1242/dev.127.7.1373
- Pobbati, A.V., Stein, A., and Fasshauer, D. (2006). N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313, 673-676. https://doi.org/10.1126/science.1129486
- Puchner, E.M., Alexandrovich, A., Kho, A.L., Hensen, U., Schafer, L.V., Brandmeier, B., Grater, F., Grubmuller, H., Gaub, H.E., and Gautel, M. (2008). Mechanoenzymatics of titin kinase. Proc. Natl. Acad. Sci. U. S. A. 105, 13385-13390. https://doi.org/10.1073/pnas.0805034105
- Reim, K., Mansour, M., Varoqueaux, F., McMahon, H.T., Sudhof, T.C., Brose, N., and Rosenmund, C. (2001). Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71-81. https://doi.org/10.1016/S0092-8674(01)00192-1
- Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M., and Scheuring, S. (2013). High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science 342, 741-743. https://doi.org/10.1126/science.1239764
- Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., and Gaub, H.E. (1997). Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109-1112. https://doi.org/10.1126/science.276.5315.1109
- Roca-Cusachs, P., del Rio, A., Puklin-Faucher, E., Gauthier, N.C., Biais, N., and Sheetz, M.P. (2013). Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. Proc. Natl. Acad. Sci. U. S. A. 110, E1361-E1370.
- Ruggeri, Z.M. and Mendolicchio, G.L. (2007). Adhesion mechanisms in platelet function. Circ. Res. 100, 1673-1685. https://doi.org/10.1161/01.RES.0000267878.97021.ab
- Ryu, J.K., Min, D., Rah, S.H., Kim, S.J., Park, Y., Kim, H., Hyeon, C., Kim, H.M., Jahn, R., and Yoon, T.Y. (2015). Spring-loaded unraveling of a single SNARE complex by NSF in one round of ATP turnover. Science 347, 1485-1489. https://doi.org/10.1126/science.aaa5267
- Saotome, K., Murthy, S.E., Kefauver, J.M., Whitwam, T., Patapoutian, A., and Ward, A.B. (2018). Structure of the mechanically activated ion channel Piezo1. Nature 554, 481-486. https://doi.org/10.1038/nature25453
- Shergill, B., Meloty-Kapella, L., Musse, A.A., Weinmaster, G., and Botvinick, E. (2012). Optical tweezers studies on Notch: single-molecule interaction strength is independent of ligand endocytosis. Dev. Cell 22, 1313-1320. https://doi.org/10.1016/j.devcel.2012.04.007
- Shi, Z., Graber, Z.T., Baumgart, T., Stone, H.A., and Cohen, A.E. (2018). Cell membranes resist flow. Cell 175, 1769-1779.e13. https://doi.org/10.1016/j.cell.2018.09.054
- Shon, M.J., Kim, H., and Yoon, T.Y. (2018). Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension. Nat. Commun. 9, 3639. https://doi.org/10.1038/s41467-018-06122-3
- Shon, M.J., Rah, S.H., and Yoon, T.Y. (2019). Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Sci. Adv. 5, eaav1697. https://doi.org/10.1126/sciadv.aav1697
- Shu, T., Jin, H., Rothman, J.E., and Zhang, Y. (2020). Munc13-1 MUN domain and Munc18-1 cooperatively chaperone SNARE assembly through a tetrameric complex. Proc. Natl. Acad. Sci. U. S. A. 117, 1036-1041. https://doi.org/10.1073/pnas.1914361117
- Siebel, C. and Lendahl, U. (2017). Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev. 97, 1235-1294. https://doi.org/10.1152/physrev.00005.2017
- Sollner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J.E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318-324. https://doi.org/10.1038/362318a0
- Sotomayor, M., Corey, D.P., and Schulten, K. (2005). In search of the hair-cell gating spring: elastic properties of ankyrin and cadherin repeats. Structure 13, 669-682. https://doi.org/10.1016/j.str.2005.03.001
- Stephenson, N.L. and Avis, J.M. (2012). Direct observation of proteolytic cleavage at the S2 site upon forced unfolding of the Notch negative regulatory region. Proc. Natl. Acad. Sci. U. S. A. 109, E2757-E2765.
- Sudhof, T.C. (2004). The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509-547. https://doi.org/10.1146/annurev.neuro.26.041002.131412
- Sudhof, T.C. (2013). Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80, 675-690. https://doi.org/10.1016/j.neuron.2013.10.022
- Sutton, R.B., Fasshauer, D., Jahn, R., and Brunger, A.T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347-353. https://doi.org/10.1038/26412
- Tapia-Rojo, R., Eckels, E.C., and Fernandez, J.M. (2019). Ephemeral states in protein folding under force captured with a magnetic tweezers design. Proc. Natl. Acad. Sci. U. S. A. 116, 7873-7878. https://doi.org/10.1073/pnas.1821284116
- Trimbuch, T. and Rosenmund, C. (2016). Should I stop or should I go? The role of complexin in neurotransmitter release. Nat. Rev. Neurosci. 17, 118-125. https://doi.org/10.1038/nrn.2015.16
- Wang, X. and Ha, T. (2013). Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991-994. https://doi.org/10.1126/science.1231041
- Wang, Y., Yao, M., Baker, K.B., Gough, R.E., Le, S., Goult, B.T., and Yan, J. (2021). Force-dependent interactions between talin and full-length vinculin. J. Am. Chem. Soc. 143, 14726-14737. https://doi.org/10.1021/jacs.1c06223
- Wu, J., Goyal, R., and Grandl, J. (2016). Localized force application reveals mechanically sensitive domains of Piezo1. Nat. Commun. 7, 12939. https://doi.org/10.1038/ncomms12939
- Xue, M., Reim, K., Chen, X., Chao, H.T., Deng, H., Rizo, J., Brose, N., and Rosenmund, C. (2007). Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14, 949-958. https://doi.org/10.1038/nsmb1292
- Yago, T., Lou, J., Wu, T., Yang, J., Miner, J.J., Coburn, L., Lopez, J.A., Cruz, M.A., Dong, J.F., McIntire, L.V., et al. (2008). Platelet glycoprotein Ibα forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J. Clin. Invest. 118, 3195-3207. https://doi.org/10.1172/JCI35754
- Yang, B., Liu, Z., Liu, H., and Nash, M.A. (2020). Next generation methods for single-molecule force spectroscopy on polyproteins and receptor-ligand complexes. Front. Mol. Biosci. 7, 85. https://doi.org/10.3389/fmolb.2020.00085
- Yao, M., Goult, B.T., Klapholz, B., Hu, X., Toseland, C.P., Guo, Y., Cong, P., Sheetz, M.P., and Yan, J. (2016). The mechanical response of talin. Nat. Commun. 7, 11966. https://doi.org/10.1038/ncomms11966
- Yao, M., Qiu, W., Liu, R., Efremov, A.K., Cong, P., Seddiki, R., Payre, M., Lim, C.T., Ladoux, B., Mege, R.M., et al. (2014). Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun. 5, 4525. https://doi.org/10.1038/ncomms5525
- Yersin, A., Hirling, H., Steiner, P., Magnin, S., Regazzi, R., Huni, B., Huguenot, P., Rios, P.D.L., Dietler, G., Catsicas, S., et al. (2003). Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proc. Natl. Acad. Sci. U. S. A. 100, 8736-8741. https://doi.org/10.1073/pnas.1533137100
- Yoon, T.Y., Lu, X., Diao, J., Lee, S.M., Ha, T., and Shin, Y.K. (2008). Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 15, 707-713. https://doi.org/10.1038/nsmb.1446
- Yoon, T.Y. and Munson, M. (2018). SNARE complex assembly and disassembly. Curr. Biol. 28, R397-R401. https://doi.org/10.1016/j.cub.2018.01.005
- Zhang, W., Cheng, L.E., Kittelmann, M., Li, J., Petkovic, M., Cheng, T., Jin, P., Guo, Z., Gopfert, M.C., Jan, L.Y., et al. (2015). Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162, 1391-1403. https://doi.org/10.1016/j.cell.2015.08.024
- Zhang, X., Halvorsen, K., Zhang, C.Z., Wong, W.P., and Springer, T.A. (2009). Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324, 1330-1334. https://doi.org/10.1126/science.1170905
- Zhang, X., Rebane, A.A., Ma, L., Li, F., Jiao, J., Qu, H., Pincet, F., Rothman, J.E., and Zhang, Y. (2016). Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex. Proc. Natl. Acad. Sci. U. S. A. 113, E8031-E8040.
- Zhang, Y. (2017). Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci. 26, 1252-1265. https://doi.org/10.1002/pro.3116
- Zhang, Y. and Hughson, F.M. (2021). Chaperoning SNARE folding and assembly. Annu. Rev. Biochem. 90, 581-603. https://doi.org/10.1146/annurev-biochem-081820-103615
- Zhou, Q., Zhou, P., Wang, A.L., Wu, D., Zhao, M., Sudhof, T.C., and Brunger, A.T. (2017). The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis. Nature 548, 420-425. https://doi.org/10.1038/nature23484
- Zhu, C. (2014). Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann. Biomed. Eng. 42, 388-404. https://doi.org/10.1007/s10439-013-0904-5
- Zorman, S., Rebane, A.A., Ma, L., Yang, G., Molski, M.A., Coleman, J., Pincet, F., Rothman, J.E., and Zhang, Y. (2014). Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. Elife 3, e03348. https://doi.org/10.7554/elife.03348