• 제목/요약/키워드: mechanical vibration

검색결과 4,397건 처리시간 0.029초

수치해석을 이용한 함정용 장비 받침대의 기계적 임피던스 및 전달 진동 분석 (Numerical Analysis of the Mechanical Impedance and Transmitted Vibration of the Foundation for the Equipment in a Naval Vessel)

  • 한형석;손윤준
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.462-467
    • /
    • 2009
  • Reduction of the structure-borne noise of the naval vessel is very important in order to reduce the underwater radiated noise of it. One of the important factors to reduce the structure-borne noise of the installed machine in a ship is the design of the foundation having sufficiently high mechanical impedance. In this paper, the mechanical impedance of the foundation for the fan-coil unit in a naval vessel is evaluated numerically according to variation of the thickness of the foundation. And also, the forced vibration analysis is conducted considering the dynamic property of the anti-vibration mount. Through the analysis results, it can be known that the dynamic property of the anti-vibration mount should be considered when the minimum level of the mechanical impedance of the foundation is set.

방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰 (Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-Vibration Mount)

  • 한형석;손윤준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.511-517
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

  • PDF

The Effect of Vibration on the Hemorheological Characteristics of Non-aggregated Blood

  • Sehyun Shin;Ku, Yun-Hee;Moon, Su-Yeon;Suh, Jang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.1104-1110
    • /
    • 2003
  • The present study investigates the hemorheological characteristics of blood flow with applying vibration to a non-aggregating red blood cell suspension. In order to obtain the non-aggregating RBC suspension, blood samples were treated with vibration at a specified condition, which viscosities were taken before and after the treatment, respectively. The viscosity of the blood samples after treatment was higher than before treatment. These treated blood samples were forced to flow through a capillary tube that was vibrated perpendicularly to the direction of the flow. The experimental results showed that vibration caused a reduction of the flow resistance of the non-aggregated blood. The reduction of the flow resistance was strongly dependent on both frequency and amplitude of vibration. These results show potential in treating various diseases in the microcirculation associated with blood cell aggregation.

방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰 (Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-vibration Mount)

  • 한형석;손윤준
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.320-326
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

팬 작동에 따른 비팅성 아이들 진동 평가 (Evaluation of idle vibration beated by cooling fan imbalance)

  • 박진한;안세진;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.247-249
    • /
    • 2014
  • The beating phenomenon occurs because of various causes, when idle vibration was happened. In this study, the beating phenomenon was divided into several parameters and controlled by the parameter. It was hypothesized that the beating parameter is related to discomfort of idle vibration. The three-down one-up method was performed for evaluating discomfort of controlled vibrations, which is widely used in the field of psychophysics. As a result in pilot test, a subject responds beating vibration more discomfort than normal idle vibration. In the future, the study will be implemented to know how much the parameters of beating signal affect to the discomfort at idle vibration in passenger vehicle.

  • PDF

전자기력을 이용한 능동제진에 관한 연구 (A Study on Active Vibration Isolation Using Electro-Magnetic Actuator)

  • 손태규;김규용;박영필
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1169-1181
    • /
    • 1994
  • Vibration isolation of mechanical systems, in general, is achieved through passive or active vibration isolators. Passive vibration isolator has an inherenrt performance limitation. Whereas, active vibration isolator provides significantly superior vibration-isolation performance at the cost of energy sources and sensors. Recently, in many cases, such as suspension system, precision machinery ... etc, active isolation system outweighs its limitation. Therefore, many studies, researches, and applications are carried out in this field. In this study, vibration-isolation characteristics of an active vibration control system using electromagnetic force actuator are investigated. Several control algorithms including optimal, feedforward are used for active vibration isolation. From the experimental results of each algorithm, effective control algorithms for this active vibration-isolation system are proposed.

The Effect of Random Point Excitation on the Vibration Level of Plates

  • Park, Myung-Jin;Yoo, Song-Min;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.583-590
    • /
    • 2002
  • When a mechanical structure is driven by stationary wide band random point forces, the resulting vibration depends upon the number, location, and joint statistical properties of the exciting forces. In this study, under the assumption of light damping, an approximate procedure for analyzing plates is briefly outlined. The effects of number, location and correlation of the force field on the vibration level are then investigated for various cases in which random point forces with band limited white noise are applied, and the optimal spacing between input forces that produces a relative minimum in the vibration response is predicted.

Vibration Suppression Control for a Twin-Drive Geared Mechanical System with Backlash: Effects of Model-Based Control

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1392-1397
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a twin-drive geared mechanical system. This technique is based on a model-based control in order to establish the damping effect at the driven machine part. The control model is composed of reduced-order electrical and mechanical parts. This control model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a twin-drive geared system with backlash. In the previous work, the performance of this control method is examined by simulations. In this paper, the effectiveness of this control technique is verified by experiments. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF

축 방향 하중 전달 부재의 진동제어 (Active Vibration Control of a Cylindrical Rod Transmitting Axial Load)

  • 최승주;박현철;황운봉
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1950-1959
    • /
    • 2001
  • An active control of the vibration transmitted by longitudinal load in flight control system is investigated numerically. The flight control system is modeled as a finite, thin shell cylinder with constant thickness. A vibration source is generated by exterior monopole source. Distributed piezoelectric actuator is used to control of the vibration. Thin shell theory is used to formulate the numerical models. The amplitude of vibration at discrete location and power transmission are minimized by analytical optimization method. Genetic algorithm is used as numerical optimization method to search optimal actuator position and size which amplitude of vibration is minimized.

모델 참조 제어 방법에 의한 시선 안정화 짐발의 공진 제어 (Vibration suppression control based on model reference approach for LOS stabilization gimbal)

  • 마진석;권우현;강명숙
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.540-549
    • /
    • 1999
  • In this paper, the vibration suppression scheme based on a model referece approach is proposed. The vibration results from the coupling of the system and its frequency are given by the mechanical factors. In the proposed scheme, a low frequency vibration mode is transferred to high one. And also its damping ratio can be increased without any mechanical redesign. Therefore, bandwidth and open loop gain of the plant are increased and the performance of the system can be improved. This paper analyzes the proposed vibration suppression scheme, which is compared with the conventional control scheme for mechanical resonance suppression. For proving the realistic validity, we apply the proposed scheme to a LOS(Line Of Sight) stabilization system which has vibration effect. Finally, the proposed scheme is verified through simulations and experiments.

  • PDF