• 제목/요약/키워드: mechanical updating

검색결과 85건 처리시간 0.023초

준역행렬과 투영행렬을 이용한 구속 다물체계의 동역학 해석 (A dynamic analysis for constrained multibody systems using pseudo-inverse and projection matrix)

  • 김외조;유완석
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.170-176
    • /
    • 1998
  • In this paper, the column space and null space of the Jacobian matrix were obtained by using the pseudo-inverse method and projection matrix. The equations of motion of the system were replaced by independent acceleration components using the null space matrix. The proposed method has the following advantages. (1) It is simple to derive the null space. (2) The efficiency is improved by getting rid of constrained force terms. (3) Neither null space updating nor coordinate partitioning method is required. The suggested algorithm is applied to a three-dimensional vehicle model to show the efficiency.

Adaptive Mesh Refinement Procedure for Shear Localization Problems

  • Kim, Hyun-Gyu;Im, Se-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2189-2196
    • /
    • 2006
  • The present work is concerned with the development of a procedure for adaptive computations of shear localization problems. The maximum jump of equivalent strain rates across element boundaries is proposed as a simple error indicator based on interpolation errors, and successfully implemented in the adaptive mesh refinement scheme. The time step is controlled by using a parameter related to the Lipschitz constant, and state variables in target elements for refinements are transferred by $L_2$-projection. Consistent tangent moduli with a proper updating scheme for state variables are used to improve the numerical stability in the formation of shear bands. It is observed that the present adaptive mesh refinement procedure shows an excellent performance in the simulation of shear localization problems.

An Accelerated Inverse Perturbation Method for Structural Damage Identification

  • Park, Young-Jae;Lee, Usik
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.637-646
    • /
    • 2003
  • In the previous study, the inverse perturbation method was used to identify structural damages. Because all unmeasured DOFs were considered as unknown variables, considerable computational effort was required to obtain reliable results. Thus, in the present study, a system condensation method is used to transform the unmeasured DOFs into the measured DOFs, which eliminates the remaining unmeasured DOFs to improve computational efficiency. However, there may still arise a numerically ill-conditioned problem, if the system condensation is not adequate for numerical Programming or if the system condensation is not recalibrated with respect to the structural changes. This numerical problem is resolved in the present study by adopting more accurate accelerated improved reduced system (AIRS) as well as by updating the transformation matrix at every step. The criterion on the required accuracy of the condensation method is also proposed. Finally, numerical verification results of the present accelerated inverse perturbation method (AIPM) are presented.

Identifiability of Ludwik's law parameters depending on the sample geometry via inverse identification procedure

  • Zaplatic, Andrija;Tomicevic, Zvonimir;Cakmak, Damjan;Hild, Francois
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.133-149
    • /
    • 2022
  • The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik's nonlinear isotropic hardening law. Finite element model updating(FEMU) was used to calibrate the material parameters. FEMU computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a large curvature radius provided more reliable material parameters.

FCC 다결정재의 집합조직 발전에 따른 이방성의 변화 (Anisotropy due to Texture Development in FCC Polycrystals)

  • 김응주;이용신
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1516-1523
    • /
    • 1996
  • The present study is concerned with the development of anisotropy and deformation texture in polycrystals. The individual grain in an aggregate is assumed to experience the viscoplastic dedformation with crystallographic slip that unsure uniquenessof the active slip systems and shearing rate onthese systems. Two different methods for updating the grain orientation are examined. Texture development for some deformation modes such as plane strain compression, uniaxial tension and simple shear are found. Changes in anisotropic flow potential due to texture development during large deformation are also given. Anisotropic behavior of polycrystals with defferent textures are examined.

다양한 2차원 영역에서의 향상된 Paving법을 이용한 자동 사각 요소 생성 (Automatic Quadrilateral Mesh Generation Using Updated Paving Technique in Various Two Dimensional Objects)

  • 양현익;김명한
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1762-1771
    • /
    • 2003
  • In part of mechanical design analysis, quadrilateral mesh is usually used because it provides less approximate errors than triangular mesh. Over the decades, Paving method has been considered as the most robust method among existing automatic quadrilateral element mesh generation methods. However, it also has some problems such as unpredictable node projection and relatively large element generation. In this study, the aforementioned problems are corrected by updating the Paving method. In so doing, a part of node projection process is modified by classifying nodes based on the interior angles. The closure check process is also modified by adding more nodes while generating elements. The result shows well shaped element distribution in the final mesh without any aforementioned problems.

누적 센서 데이터 갱신을 이용한 아크/라인 세그먼트 기반 SLAM (Arc/Line Segments-based SLAM by Updating Accumulated Sensor Data)

  • 염서군;최윤성;무경;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.936-943
    • /
    • 2015
  • This paper presents arc/line segments-based Simultaneous Localization and Mapping (SLAM) by updating accumulated laser sensor data with a mobile robot moving in an unknown environment. For each scan, the sensor data in the set are stored by a small constant number of parameters that can recover the necessary information contained in the raw data of the group. The arc and line segments are then extracted according to different limit values, but based on the same parameters. If two segments, whether they are homogenous features or not, from two scans are matched successfully, the new segment is extracted from the union set with combined data information obtained by means of summing the equivalent parameters of these two sets, not combining the features directly. The covariance matrixes of the segments are also updated and calculated synchronously employing the same parameters. The experiment results obtained in an irregular indoor environment show the good performance of the proposed method.

Topological material distribution evaluation for steel plate reinforcement by using CCARAT optimizer

  • Lee, Dongkyu;Shin, Soomi;Park, Hyunjung;Park, Sungsoo
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.793-808
    • /
    • 2014
  • The goal of this study is to evaluate and design steel plates with optimal material distributions achieved through a specific material topology optimization by using a CCARAT (Computer Aided Research Analysis Tool) as an optimizer, topologically optimally updating node densities as design variables. In typical material topology optimization, optimal topology and layouts are described by distributing element densities (from almost 0 to 1), which are arithmetic means of node densities. The average element densities are employed as material properties of each element in finite element analysis. CCARAT may deal with material topology optimization to address the mean compliance problem of structural mechanical problems. This consists of three computational steps: finite element analysis, sensitivity analysis, and optimality criteria optimizer updating node densities. The present node density based design via CCARAT using node densities as design variables removes jagged optimal layouts and checkerboard patterns, which are disadvantages of classical material topology optimization using element densities as design variables. Numerical applications that topologically optimize reinforcement material distribution of steel plates of a cantilever type are studied to verify the numerical superiority of the present node density based design via CCARAT.

스카라 로봇의 오프라인 프로그래밍을 위한 시각정보 보정기법 (A Visual Calibration Scheme for Off-Line Programming of SCARA Robots)

  • 박창규;손권
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.62-72
    • /
    • 1997
  • High flexibility and productivity using industrial robots are being achieved in manufacturing lines with off-line robot programmings. A good off-line programming system should have functions of robot modelling, trajectory planning, graphical teach-in, kinematic and dynamic simulations. Simulated results, however, can hardly be applied to on-line tasks until any calibration procedure is accompained. This paper proposes a visual calibration scheme in order to provide a calibration tool for our own off-line programming system of SCARA robots. The suggested scheme is based on the position-based visual servoings, and the perspective projection. The scheme requires only one camera as it uses saved kinematic data for three-dimensional visual calibration. Predicted images are generated and then compared with camera images for updating positions and orientations of objects. The scheme is simple and effective enough to be used in real time robot programming.

A novel adaptive unscented Kalman Filter with forgetting factor for the identification of the time-variant structural parameters

  • Yanzhe Zhang ;Yong Ding ;Jianqing Bu;Lina Guo
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.9-21
    • /
    • 2023
  • The parameters of civil engineering structures have time-variant characteristics during their service. When extremely large external excitations, such as earthquake excitation to buildings or overweight vehicles to bridges, apply to structures, sudden or gradual damage may be caused. It is crucially necessary to detect the occurrence time and severity of the damage. The unscented Kalman filter (UKF), as one efficient estimator, is usually used to conduct the recursive identification of parameters. However, the conventional UKF algorithm has a weak tracking ability for time-variant structural parameters. To improve the identification ability of time-variant parameters, an adaptive UKF with forgetting factor (AUKF-FF) algorithm, in which the state covariance, innovation covariance and cross covariance are updated simultaneously with the help of the forgetting factor, is proposed. To verify the effectiveness of the method, this paper conducted two case studies as follows: the identification of time-variant parameters of a simply supported bridge when the vehicle passing, and the model updating of a six-story concrete frame structure with field test during the Yangbi earthquake excitation in Yunnan Province, China. The comparison results of the numerical studies show that the proposed method is superior to the conventional UKF algorithm for the time-variant parameter identification in convergence speed, accuracy and adaptability to the sampling frequency. The field test studies demonstrate that the proposed method can provide suggestions for solving practical problems.