• Title/Summary/Keyword: mechanical shock reliability

Search Result 72, Processing Time 0.038 seconds

Evaluation of Mechanical Stress for Solder Joints (솔더접합부에 대한 기계적 스트레스 평가)

  • ;Yoshikuni Taniguchi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.61-68
    • /
    • 2002
  • Thermal shock testing was used to evaluate reliability that appeared in the solder joints of electronic devices when they were subjected to thermal cycling. Recently, mobile devices have come smaller and multi-functional, with the increasing need for high-density packaging, BGA or CSP has become the main trend for surface mounting technology, and therefore mechanical stress life for solder joints in BGA/CSP type packages has required. Reliability of BGA/CSP solder joints was evaluated with electric resistivity change of daisy chain pattern and stress-strain curve measured using strain gage attached on the surface of PCB under mechanical impact loading. In this report, applications of PCB Universal Testing Machine we have developed and experimental datum of SONY estimating dynamic behavior of mechanical stress in BGA/CSP solder joints are introduced.

  • PDF

The Study on the Long-term Reliability Characteristics of Ribbon Joint: Solar Cell Ribbon Thickness and Solder Compositions (태양전지 Ribbon 두께와 조성에 따른 Ribbon접합부의 장기 신뢰성 특성에 관한 연구)

  • Jeon, Yu-Jae;Kang, Min-Soo;So, Kyung-Jun;Lee, Jae-June;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.88-94
    • /
    • 2014
  • In this paper, Thermal Shock tests were performed varying the composition of the solder and ribbon thickness (A-type:0.2mm/60Sn40Pb, B-type:0.25mm/60Sn40Pb, C-type:0.2 /62Sn36Ag2Pb, D-type:0.25mm/62Sn36Ag2Pb) for evaluating the long-term reliability about Ribbon junction of Silicon solar cells. Thermal Shock test condition was performed during the 600cycles having $-40^{\circ}C{\sim}85^{\circ}C$ temperature range each 15 minutes; One cycle time was 30min. As a result, the initial efficiency of the A-type, B-type, and C, D-type were showed 15.0%, 15.4% and 15.8% respectively. After thermal shock test, the efficiency decreasing-rate of each type were as follow that A-type was 13.8%, B-Type was 15.4%. C-Type and D-Type was 15.3% and 16.2%, respectively. Also, degradation of surface changes and I-V characteristic curves were showed that the series resistance of the A, C-type was increased. Also, current lowering starting point of C-type shown 0.05volt[v] earlier than that of A-type. And B, D-type shown characteristics of composite lowering efficiency such as increase of series resistance, decrease of parallel resistance and cell damage. Therefore Initial solderability and efficiency of specimens using the solder with SnAgPb were superior. But, It has inferior the long-term reliability. The test was confirmed that as the ribbon thickness increases, long-term reliability of solar cell will decrease.

A Study on Thermal Behavior and Reliability Characteristics of PCBs with a Carbon CCL (카본 CCL이 적용된 PCB의 열거동 및 신뢰성 특성 연구)

  • Cho, Seunghyun;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.47-56
    • /
    • 2015
  • In this paper, the Thermal behavior and reliability characteristics of carbon CCL (Copper Claded Layer), which can be used as the core of HDI (High Density Interconnection) PCB (Printed Circuit Board) are evaluated through experiments and numerical analysis using CAE (Computer Aided Engineering) software. For the characterization of the carbon CCL, it is compared with the conventional FR-4 core and Heavy Cu core. From research results, the deformation amount of the flexure strength of PCB is the highest with pitch grade carbon and thermal behavior of PCB is lowest as temperature increases. In addition, TC (Thermal Cycling), LLTS (Liquid-to-Liquid Thermal Shock) and Humidity tests have been applied in the PCB with carbon core and the reliability of PCB with carbon core is confirmed through reliability tests. Also, possibility of uneven surface of the via hole and wear of the drill bit due to the carbon fibers are analyzed. surface of the via hole is uniform, the surface of the drill bit is smooth. Therefore, it is proved that the carbon CCL has the drilling workability of the same level as conventional core material.

A Study on the Lifetime Assessment of Bearings According to the Output Shaft Supporting Structures in Transmissions of a Tracked Vehicles (궤도차량 변속기 출력 축 지지구조에 따른 베어링 수명 영향 평가에 대한 연구)

  • Park, Jong-Won;Kim, Hyoung-Eui
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.331-342
    • /
    • 2011
  • The transmission of tracked vehicles performs complex functions as steering, shifting, braking, etc. and the system level life time has been a key influenced by the number of sub-parts like as gear assembly, torque converter, clutches, bearings and so on. In particular, the mechanical type steering system in tracked vehicle has impact shock torques in steering shift and those kind of shock torques can effect on the durability of many sub-parts in power train system. The field failure modes of gear assembly, steering assembly and the bearings of output shaft appear as a very complex phenomenon. In this study, the actual failure, which may occur in field, of the transmission was investigated comprehensively and that the endurance test on the resulting output shaft bearing failure analysis and life assessment was performed. Life time test method used in this study, developed for the purpose of the internal usage, and under these testing techniques the impact of the each bearing damage, which used in tracked vehicle transmission left / right outputs of different structures, was analyzed.

Market Environmental Conditions and Reliability Testing for Electronic Equipments (전자기기의 시장환경조건과 신뢰성시험)

  • Tanaka, Hirokazu;Kim, Keun-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.1-5
    • /
    • 2012
  • The quality and performance of electronic parts and equipment are affected by various types of stresses. Thermal stress caused by changes in the ambient usage environment and mechanical stress from vibration shock during transportation can degrade both quality and performance. This paper gives an overview about recent researches for measuring market environmental conditions of electronic equipments.

Shock Absorbing Safe Mechanism Based on Transmission Angle of a 4-bar Linkage (4절링크의 전달각에 기초한 충격흡수식 안전 메커니즘)

  • 박정준;김병상;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.180-185
    • /
    • 2004
  • Unlike industrial manipulators, the manipulators mounted on the service robots are interacting with humans in various aspects. Therefore, safety has been the important design issue. Many compliant robot arm designs have been introduced for safety. It is known that passive compliance method has faster response and higher reliability than active ones. In this paper, a new safe mechanism based on passive compliance has been proposed. Passive mechanical elements, specifically transmission angle of the 4-bar linkage, springs and shock absorbing modules are incorporated into this safe mechanism. This mechanism works only when the robot arm exerts contact force much more than the human pain tolerance. Validity of the safe mechanism is verified by simulations and experiments. In this research, it is shown that the manipulator using this mechanism provides higher performance and safety than those using other passive compliance mechanisms.

  • PDF

The Optimization Design of Engine Cradle using Hydroforming (하이드로포밍을 이용한 엔진크래들 최적설계)

  • Oh, Jin-Ho;Lee, Gyu-Min;Choi, Han-Ho;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.571-575
    • /
    • 2008
  • An engine cradle is a quite important structural assembly for supporting the engine, suspension and steering parts of vehicle and absorbing the vibrations during the drive and the shock in the car crash. Recently, the engine cradle having structural stiffness enough to support the surrounding parts and absorbing the shock of collision has been widely used. The hydroforming technology may cause many advantages to automotive applications in terms of better structural integrity of parts, reduction of production cost, weight reduction, material saving, reduction in the number of joining processes and improvement of reliability. We focus on increasing the durability and the dynamic performance of engine cradle. For realizing this objective, several optimization design techniques such as shape, size, and topology optimization are performed. This optimization scheme based on the sensitivity can provide distinguished performance improvement in using hydroforming.

  • PDF

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

The Study on the Long-term Reliability Characteristics by Solar Cell Ribbon Thickness (태양전지 두께에 Ribbon 따른 장기 신뢰성 특성에 관한 연구)

  • Kang, Min-Soo;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.333-337
    • /
    • 2013
  • 본 논문에서는 태양전지의 Ribbon 두께(A-type:0.2mm, B-type:0.25mm)에 따라 3가지 온도조건 ($-40{\sim}65^{\circ}C$, $-40{\sim}85^{\circ}C$, $-40{\sim}105^{\circ}C$)으로 열충격 시험을 수행하였다. 그 결과, A, B type 별 초기 평균효율은 15.2%로 같았다. 하지만, 열충격 시험(600 Cycle) 후 Condition 1에서 A-type 7.5%, B-type 7.7%, Condition 2에서는 8.6%, 13.2%를 나타내었다. Condition 3에서는 각각 11.6%, 19.9%의 감소율을 나타내었다. 열충격 시험 후 A-type보다 Ribbon두께가 두꺼운 B-type의 효율이 크게 감소하였다. 이는 A, B type 모두 이종재료 접합부의 금속간화합물(IMC)층이 형성되어 전기적 저항이 증대된 것으로 판단된다. 또한, B-type의 I-V 특성 곡선 및 EL을 분석한 결과, p-n층이 파괴되고, 병렬저항이 감소하여, 장기적 신뢰성에서 A-type 보다 더 취약한 것으로 나타났다. 향후 태양전지 Ribbon 형상에 따른 장기 신뢰성 특성에 대해 수치해석 및 시뮬레이션 분석이 수반되어야 할 것이다.

LED Delamination Evaluating Method by Thermal Shock Test (열충격시험을 통한 LED 박리 평가법에 관한 연구)

  • Jang, In-Hyeok;Han, Ji-Hoon;Ko, Min-ji;Lee, Young-Joo;Lim, Hong-Woo
    • Journal of Advanced Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.121-124
    • /
    • 2013
  • This paper proposed a new concept of estimating method for LED(light-emitting diode) delamination with high accuracy. Usually, The LED is composed several materials which are LED chips, gold wire, phosphor, epoxy resin, adhesive, reflector and lead frame. These different materials are usually delaminated in a trouble conditions which are huge temperature difference, hot and humid or mechanical shocked. When the components are delaminated, a luminance will be lost, moisture be absorbed easily and a thermal resistance be increased attendantly. As a conventional method to estimate a delamination of LEDs, a solution immersing method is usually used in a field of LED manufacturing companies or researching institutes. This method has an advantage of simplicity but it is only shown that the existence of delamination or not. In this paper, we have proposed an estimating method for LEDs delamination using the polishing and the electron microscope. New proposed method has shown the result of confirming delamination without destruction and enabled quantitative analysis for LED delamination.