• 제목/요약/키워드: mechanical positioning

검색결과 478건 처리시간 0.022초

브러시레스 직류 모터로 구동되는 고속 작동기의 다중 동시 사양 제어 (Multiple Simultaneous Specification Control of a High Speed Positioning System Driven by a Brushless D.C. Motor)

  • 강봉수;김수현;곽윤근
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1093-1098
    • /
    • 2004
  • This paper presents a close-loop feedback control scheme, which can simultaneously satisfy multiple conflicting control performances, for a high speed positioning system driven by a brushless D.C. motor. With the dynamic model of the motor and proportional-plus-derivative feedback controllers selected as sample controllers, the convex combined feedback controller is formulated for implementing a direct-drive manipulator. Experimental results show that the developed multiple simultaneous specification(MSS) controller can meet desired control performances; maximum overshoot and rise time.

In-Process Cutter Runout Compensation Using Repetitive Learning Control

  • Joon Hwang;Chung, Eui-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.13-18
    • /
    • 2003
  • This paper presents the in-process compensation to control cutter ronout and to improve the machined surface quality. Cutter ronout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by cutter ronout compensation.

A control allocation sterategy based on multi-parametric quadratic programming algorithm

  • Jeong, Tae-Yeong;Ji, Sang-Won;Kim, Young-Bok
    • 수산해양기술연구
    • /
    • 제49권2호
    • /
    • pp.153-160
    • /
    • 2013
  • Control allocation is an important part of a system. It implements the function that map the desired command forces from the controller into the commands of the different actuators. In this paper, the authors present an approach for solving constrained control allocation problem in vessel system by using multi-parametric quadratic programming (mp-QP) algorithm. The goal of mp-QP algorithm applied in this study is to compute a solution to minimize a quadratic performance index subject to linear equality and inequality constraints. The solution can be pre-computed off-line in the explicit form of a piecewise linear (PWL) function of the generalized forces and constrains. The efficiency of mp-QP approach is evaluated through a dynamic positioning simulation for a vessel by using four tugboats with constraints about limited pushing forces and found to work well.

UGC의 복합식 Anti-sway에 관한 연구 (A Study on the Anti-sway System of the UGC)

  • 김두형;신영재;박경택;박찬훈;김태우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1999년도 추계학술대회논문집
    • /
    • pp.281-291
    • /
    • 1999
  • Productivity of container cranes and gantry cranes is influenced by the performance of crane hardware and cycle time. Cycle time in container handling is influenced by the path of containers and relative positioning of containers. So we have to minimize the sway of containers and spreaders to minimize relative positioning time. And sway minimization is influenced by the skill of workers in manual gantry cranes. In this paper, we will develop anti-sway system using mechanical and electrical method. Proposed hybrid system uses the basic structure of general manual gantry crane. So, it is very useful and effective. Electrical methods are main methods and mechanical methods are auxiliary methods.

  • PDF

초정밀가공 시 임피던스 측정을 통한 시편 수평맞춤 및 공구의 기준위치 설정 (Workpiece Horizontality and Reference Positioning of Cutting Tool by Measuring Impedance in Ultra-Precision-Machining)

  • 이호철;김기대
    • 한국정밀공학회지
    • /
    • 제28권12호
    • /
    • pp.1366-1371
    • /
    • 2011
  • In ultra precision machining, it is necessary to adjust the horizontality and reference position of a workpiece in a noncontact manner. For this, a simple process by measuring impedance between a tool tip and a workpiece which are connected to impedance analyzer is proposed. As the distance between the tool and the workpiece gets closer, the reduction rate of impedance becomes higher over all frequency ranges. By setting threshold value of impedance reduction rate at specific frequencies through preliminary experiments, the distance between the tool and the workpiece can be predicted and it directly enables us to horizontalize the workpiece and to set the tool to the desired reference position.

Study of nonlinear hysteretic modelling and performance evaluation for piezoelectric actuators based on activation functions

  • Xingyang Xie;Yuguo Cui;Yang Yu
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.133-143
    • /
    • 2024
  • Piezoelectric (PZT) actuators have been widely used in precision positioning fields for their excellent displacement resolution. However, due to the inherent characteristics of piezoelectric actuators, hysteresis has been proven to greatly reduce positioning performance. In this paper, five mathematical hysteretic models based on activation function are proposed to characterize the nonlinear hysteresis characteristics of piezoelectric actuators. Then the performance of the proposed models is verified by particle swarm optimization (PSO) algorithm and the experiment data. Thirdly, the fitting performance of the proposed models is compared with the classical Bouc-Wen model. Finally, the performance of the five proposed models in modelling hysteresis nonlinearity of piezoelectric drivers is compared, in terms of RMSE, MAPE, SAPE and operation efficiency, and relevant suggestions are given.

고진공 환경중 고출력 초음파 모터 이송 스테이지의 나노미터 위치 제어 (Nano-Positioning of High-Power Ultrasonic Linear Motor Stage in High-Vacuum Environment)

  • 김완수;이동진;이선규
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1613-1622
    • /
    • 2010
  • 본 연구는 고진공 환경중 초음파 리니어 스테이지의 나노미터 위치제어를 기술하고 있다. 고진공 환경 중 초정밀 위치 제어 시스템에 응용하기 위해 3 차 종진동 모드와 6 차 횡진동 모드를 가지는 BLT를 개발 했다. 안정적인 고출력을 위해 BLT 는 하나의 공진 주파수로 두 개의 모드 진동을 발생 시켜야 한다. 하나의 공진 주파수를 이용 하기 위해 어드미턴스를 변화시켜 각 모드의 공진 주파수를 일치시켜 조건이 다른 대기 환경에서 안정적인 고출력을 얻을 수 있었다. 기압 변화에 따라 구동 특성이 달라지는 시스템을 제어하기 위해 마찰력 변화에 따른 비선형 특성을 보상한 NCTF 제어를 사용했다. 설계된 제어기를 이용해 고진공 환경에서 시스템을 나노미터 정도로 제어하는 결과를 얻을 수 있었다.

가변 스텝 마이크로 액츄에이터의 설계 및 구동특성 (Design and Performance Evaluation of Micro Stepping Actuator with a Variable Step Size)

  • Lim, Y.M.;Kim, S.H.;Kwak, Y.K.
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.26-31
    • /
    • 1995
  • A new actuating mechanism suitable for a micro positioning device is developed using piezo-electric elements. The actuator can make a step movement of 0.5 .mu. m up to 3.5 .mu. m. The step size can be adjusted on demand. By repeating this step action, long distance movement is achieved. Precise positioning can be obtained by combining the coarse motion with the maximum step size and fine motion. Two types of fine motion have been proposed for a driving method. Firstly, feedback control bases on PID is applied. The experimental results for the two method are presented.

  • PDF

능동 자기 베어링을 이용한 비접촉식 선형 구동기 (Contact-free Linear Actuator Using Active Magnetic Bearing)

  • 이상헌;백윤수
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.91-98
    • /
    • 2003
  • In the field of precision manufacturing demanding high positioning performance, the mechanical friction in positioning device deteriorates the quality of the product and increases the cost of production for positioning devices. Therefore, we propose a contract-free linear actuator using active magnetic bearing. The structure and operating principle of the proposed system are explained, and the magnetic forces are analyzed by magnetic circuit theory to design magnetic bearings and linear actuator. With the derived equation of motion, the stability is identified. Experimental results are presented to show the feasibility.

하중에 의한 위치결정오차와 테이블 처짐에 관한 연구 (A Study on the Positioning Accuracy and table Deflection by Load)

  • 전언찬
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.98-104
    • /
    • 1999
  • As the accuracy of manufactured goods needed high accuracy processing has made the efficiency of NC and measurement technology development, the innovation of machine tools has influence the development of the semi-conductor and optical technology. The movement errors can be expressed in terms of yaw, roll an pitch etc. In the case of expanding the error range, static, dynamic and servo gain errors can be included. Machining center might have twenty-one movement errs including three types of joint errors. Those errors have been measured on the condition of just loading of standard table. Regarding these measuring methods, the mechanical compliance of the structure has not been considered. In this paper, therefor, the influences of the additional load on the positioning accuracy are investigated. The results and the techniques proposed in this study can be considered very effective and useful to compensate more correctly the positioning motion.

  • PDF