• Title/Summary/Keyword: mechanical hyperalgesia

Search Result 79, Processing Time 0.032 seconds

Anti-Hyperalgesic Effects of Meloxicam Hydrogel via Phonophoresis in Acute Inflammation in Rats; Comparing Systemic and Topical Application

  • Kim, Tae-Youl;Kim, Young-Il;Seo, Sam-Ki;Kim, Soo-Hyeun;Yang, Kyu-Ho;Shin, Sang-Chul
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.305-310
    • /
    • 2009
  • The aim of this study was to determine if a meloxicam hydrogel could be administered in vivo via phonophoretic transdermal delivery using pulsed ultrasound by examining its anti-hyperalgesic effects in a rat carrageenan inflammation model. Carrageenan (1%) was injected into the plantar surface of the right hindpaw, and meloxicam hydrogel was administered via phonophoretic transdermal delivery. Changes in the mechanical and thermal hyperalgesia, as well as swelling, showed that phonophoretic delivery of meloxicam exhibited significantly better anti-hyperalgesic and anti-inflammatory effects than pulsed ultrasound. Topical and systemic application of meloxicam hydrogel using phonophoresis showed similar anti-hyperalgesic effects. These findings suggest that the transdermal administration of a meloxicam hydrogel using phonophoresis by pulsed ultrasound might be useful for treating acute inflammation.

The Effect of Phosphodiesterase-4-Specific Inhibitor in the Rat Model of Spinal Nerve Ligation

  • Kim, Sung-Hoon;Park, Bit-Na-Ri;Kim, Seok-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.2
    • /
    • pp.109-113
    • /
    • 2011
  • Objective : Peripheral neuropathy is characterized by hyperalgesia, spontaneous burning pain, and allodynia. The purpose of this study was to investigate the effect of rolipram, a phosphodiesterase-4-specific inhibitor, in a segmental spinal nerve ligation model in rats. Methods : Both the L5 and L6 spinal nerves of the left side of the rats were ligated. Phosphodiesterase-4 inhibitor (rolipram) and saline (vehicle) were administered intraperitoneally. We measured mechanical allodynia using von Frey filaments and a nerve conduction study. Results : The mechanical allodynia, which began to manifest on the first day, peaked within 2 days. Multiple intraperitoneal injections of rolipram ameliorated the mechanical allodynia. Furthermore, an intraperitoneal administration of rolipram improved the development of pain behavior and nerve conduction velocity. Conclusion : This study suggests that the phosphodiesterase-4 inhibitor, rolipram, alleviates mechanical allodynia induced by segmental spinal nerve ligation in rats. This finding may have clinical implications.

Effects of Pre-treatment with NMDA Antagonist for Tactile Allodynia in Nerve Ligation Induced Neuropathic Pain Rat (신경결찰에 의한 신경병증성 통증 쥐에서 NMDA Antagonist 전처치가 이질통 발생에 미치는 영향)

  • Lee, Youn-Woo;Yoon, Duck-Mi;Lee, Jong-Seok;Ahn, Eun-Kyoung;Lee, Young-Sook;Kim, Jong-Rae
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.311-317
    • /
    • 1996
  • Background: Following peripheral nerve injury, rats will show a tactile allodynia and hyperalgesia. But the mechanism of allodynia is still obscure. Previous studies have shown this allodynia was reversed by intrathecal alpha-2 agonists and NMDA antagonists, but not by morphine. In formalin test, either the pretreatment of NMDA antagonist or morphine prevents the hyperalgesia. The present studies, using rats rendered allodynic by ligation of the left L5 and L6 nerves, aimed to investigate the effects of pretreatment of MK-801 and morphine on the development of tactile allodynia. Methods and Material: Male Sprague-Dawley rats (100~150g) were anesthetized with halothane, the left L5 and L6 spinal nerves were ligated tightly by 6-0 black silk. For sham operation muscle dissection was performed but the spinal nerve was not ligated. For pretreatment of drugs, MK-801 (NMDA antagonist; 0.3 mg/kg). CNQX (non-NMDA) antagonist; 0.3 mg/kg), morphine (1 mg/kg) or saline (placebo) was administered subcutaneously 30 minutes before operation. A second dose was administered subcutaneously 24 hours after operation and further doses were given daily for 2 days further. The volume of injection was 5 ml/kg. To assess the mechanical allodynia, paw withdrawal thresholds of ipsilateral limb were determined using 8 von Frey hairs. Results: Within 2 days saline, CNQX or morphine injected rats developed tactile allodynia (paw withdrawal threshold was about 2g), and persisted for over 2 weeks. Pretreatment of MK-801 delayed the development of tactile allodynia for 3 days comparing to that of saline injected rat. Conclusion: NMDA receptor in the central nerve system plays an important role in the development of tactile allodynia induced by peripheral nerve injury. But the mechanism may be different from hyperalgesia developed in formalin test.

  • PDF

Effects of Nefopam on Streptozotocin-Induced Diabetic Neuropathic Pain in Rats

  • Nam, Jae Sik;Cheong, Yu Seon;Karm, Myong Hwan;Ahn, Ho Soo;Sim, Ji Hoon;Kim, Jin Sun;Choi, Seong Soo;Leem, Jeong Gil
    • The Korean Journal of Pain
    • /
    • v.27 no.4
    • /
    • pp.326-333
    • /
    • 2014
  • Background: Nefopam is a centrally acting non-opioid analgesic agent. Its analgesic properties may be related to the inhibitions of monoamine reuptake and the N-methyl-D-aspartate (NMDA) receptor. The antinociceptive effect of nefopam has been shown in animal models of acute and chronic pain and in humans. However, the effect of nefopam on diabetic neuropathic pain is unclear. Therefore, we investigated the preventive effect of nefopam on diabetic neuropathic pain induced by streptozotocin (STZ) in rats. Methods: Pretreatment with nefopam (30 mg/kg) was performed intraperitoneally 30 min prior to an intraperitoneal injection of STZ (60 mg/kg). Mechanical and cold allodynia were tested before, and 1 to 4 weeks after drug administration. Thermal hyperalgesia was also investigated. In addition, the transient receptor potential ankyrin 1 (TRPA1) and TRP melastatin 8 (TRPM8) expression levels in the dorsal root ganglion (DRG) were evaluated. Results: Pretreatment with nefopam significantly inhibited STZ-induced mechanical and cold allodynia, but not thermal hyperalgesia. The STZ injection increased TRPM8, but not TRPA1, expression levels in DRG neurons. Pretreatment with nefopam decreased STZ-induced TRPM8 expression levels in the DRG. Conclusions: These results demonstrate that a nefopam pretreatment has strong antiallodynic effects on STZ-induced diabetic rats, which may be associated with TRPM8 located in the DRG.

Incision-induced Pain Behaviors in the DBA/2 Mouse (DBA/2 계열 마우스의 절개통증에서의 행동양상)

  • Bae, Da Hyoun;Park, Soo Seog;Woo, Young Cheol
    • The Korean Journal of Pain
    • /
    • v.21 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • Background: Because genetic manipulation is commonly accomplished in mice, mouse models for pain have advanced our understanding of the mechanisms of persistent pain. The purpose of this experimental study is to develop a mouse model for understanding incision induced postoperative pain. Methods: A longitudinal incision was made at the hindpaw of male DBA/2 mice. The withdrawal frequency(WF) from applications of von Frey filaments and the response frequency (RF) to blunt mechanical stimulation were examined in an incision group and a control grouP. The withdrawal latency (WL) to radiant heat and a pain score based on weight bearing were also measured. Tests were performed 1 day before incision, and 2 hours, 1-3 days, 5 days and 7 days after incision. Results: The WF for the strongest filament was $35.0{\pm}9.1%$ before incision and this increased to $100.0{\pm}0%$ at 2 hours and to $65.0{\pm}9.1%$ at 7 days after incision. The RF to the blunt stimulus was $4.1{\pm}4.1%$ before incision and $100.0{\pm}0.0%$ at 2 hours and $42.8{\pm}10.8%$ at 7 days after incision. The WL was $6.6{\pm}0.5sec$ before incision and $2.4{\pm}0.3sec$ at 2 hours and $5.9{\pm}0.6sec$ at 7 days after incision. The pain score increased from $1.1{\pm}0.8$ to $7.4{\pm}1.5$ at 2 days after incision. Conclusions: A mouse model of acute postoperative pain was developing by making a surgical incision in the mouse hindpaw. Mechanical hyperalgesia and allodynia lasting for several days demonstrate that this model has similarities to the human post-operative pain state. Future studies will allow us to further investigate the genetic and molecular mechanisms of incisional pain.

Antinociceptive and neuroprotective effects of bromelain in chronic constriction injury-induced neuropathic pain in Wistar rats

  • Bakare, Ahmed Olalekan;Owoyele, Bamidele Victor
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.13-22
    • /
    • 2020
  • Background: The continuous search for a novel neuropathic pain drug with few or no side effects has been a main focus of researchers for decades. This study investigated the antinociceptive and neuroprotective effects of bromelain in sciatic nerve ligation-induced neuropathic pain in Wistar rats. Methods: Forty-eight Wistar rats randomly divided into eight groups comprised of six animals each were used for this study. Peripheral neuropathy was induced via chronic constriction of the common sciatic nerve. Thermal hyperalgesic and mechanical allodynia were assessed using a hotplate and von Frey filaments, respectively. The functional recovery and structural architecture of the ligated sciatic nerve were evaluated using the sciatic functional index test and a histological examination of the transverse section of the sciatic nerve. The neuroprotective effects of bromelain were investigated in the proximal sciatic nerve tissue after 21 days of treatment. Results: Bromelain significantly (P < 0.05) attenuated both the thermal hyperalgesia and mechanical allodynic indices of neuropathic pain. There were improvements in sciatic function and structural integrity in rats treated with bromelain. These rats showed significant (P < 0.05) increases in sciatic nerve nuclear transcription factors (nuclear factor erythroid-derived-2-related factors-1 [NrF-1] and NrF-2), antioxidant enzymes (superoxide dismutase and glutathione), and reduced membranelipid peroxidation compared with the ligated control group. Conclusions: This study suggest that bromelain mitigated neuropathic pain by enhancing the activities of nuclear transcription factors (NrF-1 and NrF-2) which increases the antioxidant defense system that abolish neuronal stress and structural disorganization.

Exploring the role and mechanisms of diallyl trisulfide and diallyl disulfide in chronic constriction-induced neuropathic pain in rats

  • Wang, Gang;Yang, Yan;Wang, Chunfeng;Huang, Jianzhong;Wang, Xiao;Liu, Ying;Wang, Hao
    • The Korean Journal of Pain
    • /
    • v.33 no.3
    • /
    • pp.216-225
    • /
    • 2020
  • Background: Garlic oil is a rich source of organosulfur compounds including diallyl disulfide and diallyl trisulfide. There have been studies showing the neuroprotective actions of these organosulfur compounds. However, the potential of these organosulfur compounds in neuropathic pain has not been explored. The present study was aimed at investigating the pain attenuating potential of diallyl disulfide and diallyl trisulfide in chronic constriction injury (CCI)-induced neuropathic pain in rats. The study also explored their pain-attenuating mechanisms through modulation of H2S, brain-derived neurotrophin factor (BDNF) and nuclear factor erythroid 2-related factor 2 (Nrf2). Methods: The rats were subjected to CCI injury by ligating the sciatic nerve in four places. The development of neuropathic pain was measured by assessing mechanical hyperalgesia (Randall-Selittotest), mechanical allodynia (Von Frey test), and cold allodynia (acetone drop test) on 14th day after surgery. Results: Administration of diallyl disulfide (25 and 50 mg/kg) and diallyl trisulfide (20 and 40 mg/kg) for 14 days led to a significant reduction in pain in CCI-subjected rats. Moreover, treatment with these organosulfur compounds led to the restoration of H2S, BDNF and Nrf2 levels in the sciatic nerve and dorsal root ganglia. Co-administration of ANA-12 (BDNF blocker) abolished pain attenuating actions as well as BDNF and the Nrf2 restorative actions of diallyl disulfide and diallyl trisulfide, without modulating H2S levels. Conclusions: Diallyl disulfide and diallyl trisulfide have the potential to attenuate neuropathic pain in CCI-subjected rats possibly through activation of H2S-BDNF-Nrf2 signaling pathway.

Antinociceptive Effect of Cyperi rhizoma and Corydalis tuber Extracts on Neuropathic Pain in Rats

  • Choi, Jae-Gyun;Kang, Suk-Yun;Kim, Jae-Min;Roh, Dae-Hyun;Yoon, Seo-Yeon;Park, Jin Bong;Lee, Jang-Hern;Kim, Hyun-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.387-392
    • /
    • 2012
  • In this study, we examined the antinociceptive effect of Cyperi rhizoma (CR) and Corydalis tuber (CT) extracts using a chronic constriction injury-induced neuropathic pain rat model. After the ligation of sciatic nerve, neuropathic pain behavior such as mechanical allodynia and thermal hyperalgesia were rapidly induced and maintained for 1 month. Repeated treatment of CR or CT (per oral, 10 or 30 mg/kg, twice a day) was performed either in induction (day 0~5) or maintenance (day 14~19) period of neuropathic pain state. Treatment of CR or CT at doses of 30 mg/kg in the induction and maintenance periods significantly decreased the nerve injury-induced mechanical allodynia. In addition, CR and CT at doses of 10 or 30 mg/kg alleviated thermal heat hyperalgesia when they were treated in the maintenance period. Finally, CR or CT (30 mg/kg) treated during the induction period remarkably reduced the nerve injury-induced phosphorylation of NMDA receptor NR1 subunit (pNR1) in the spinal dorsal horn. Results of this study suggest that extracts from CR and CT may be useful to alleviate neuropathic pain.

Effects of Zingiberis Rhizoma Pharmacopuncture Injected at GB30 and ST36 on Neuropathic Pain in Rats (환도(GB30) 및 족삼리(ST36) 건강약침이 신경병증성 통증 유발 흰쥐에 미치는 영향)

  • Hwang, Min Sub
    • Korean Journal of Acupuncture
    • /
    • v.36 no.1
    • /
    • pp.52-62
    • /
    • 2019
  • Objectives : The objective of this study was to investigate the effects of Zingiberis Rhizoma Pharmacopuncture(ZP) at GB30 and ST36 in neuropathic pain induced SD rats by the block of Transient Receptor Potential Vanilloid 1(TRPV1). Methods : Neuropathic pain in rats was induced by tibial and common peroneal nerve transection of right leg. The rat subjects were divided into 6 groups : normal(Nor, n=5), control(Con, n=5), neuropathic pain plus 2 mg/kg ZP injection at GB30 and ST36(ZP-A, n=5), 10 mg/kg ZP(ZP-B, n=5), 20 mg/kg ZP(ZP-C, n=5) and 0.45 mg/kg Tramadol(Tra, n=5). Three days after the surgery, injections were administered once a day for 17 days. Withdrawal response of neuropathic rats' legs were measured by stimulating the paw of Right leg with von frey filament, acetone and radient heat on day 3, 7, 11, 15, 19 after surgery. After all treatments were completed, c-Fos in the midbrain central gray and TRPV1 & TRPA1 of DRG(L5) were analyzed. Results : Groups ZP-B and ZP-C showed a meaningful decrease in the withdrawal response of mechanical allodynia, thermal hyperalgesia and cold allodynia compared to the control group(p<0.05, p<0.01, p<0.001). Groups ZP-B and ZP-C showed a meaningful decrease in the expression of c-fos and TRPV1 protein level compared to the control group(p<0.05, p<0.01, p<0.001). Conclusions : These results suggest that Zingiberis Rhizoma Pharmacopuncture at GB30 and ST36 could decrease mechanical & cold allodynia and thermal hyperalgesia by block the TRPV1 on the model of neuropathic pain.

Antinociceptive effects of oleuropein in experimental models of neuropathic pain in male rats

  • Chen, Huayong;Ma, Dandan;Zhang, Huapeng;Tang, Yanhong;Wang, Jun;Li, Renhu;Wen, Wen;Zhang, Yi
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • Background: The present investigation explored the therapeutic actions of oleuropein along with the possible signaling pathway involved in attenuating neuropathic pain in chronic constriction injury (CCI) and vincristine-induced neuropathic pain in male rats. Methods: Four loose ligatures were placed around the sciatic nerve to induce CCI, and vincristine (50 ㎍/kg) was injected for 10 days to develop neuropathic pain. The development of cold allodynia, mechanical allodynia, and mechanical hyperalgesia was assessed using different pain-related behavioral tests. The levels of H2S, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), orexin, and nuclear factor erythroid-2-related factor 2 (Nrf2) were measured in the sciatic nerve. Results: Treatment with oleuropein for 14 days led to significant amelioration of behavioral manifestations of neuropathic pain in two pain models. Moreover, oleuropein restored both CCI and vincristine-induced decreases in H2S, CSE, CBS, orexin, and Nrf2 levels. Co-administration of suvorexant, an orexin receptor antagonist, significantly counteracted the pain-attenuating actions of oleuropein and Nrf2 levels without modulating H2S, CSE and CBS. Conclusions: Oleuropein has therapeutic potential to attenuate the pain manifestations in CCI and vincristine-induced neuropathic pain, possibly by restoring the CSE, CBS, and H2S, which may subsequently increase the expression of orexin and Nrf2 to ameliorate behavioral manifestations of pain.