• Title/Summary/Keyword: mechanical feedback

Search Result 711, Processing Time 0.024 seconds

Control of Semi-active Suspensions for Passenger Cars(II) (승용차용 반능동 현가시스템의 제어)

  • Jo, Yeong-Wan;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2187-2195
    • /
    • 1997
  • A semi-active suspension test system was designed and built for the experimental study. Vehicle parameters were estimated through tests and a quarter-car model was validated by comparing computer simulation results and laboratory test results. Alternative semi-active suspension control laws have been tested using the test system. Modulable damper used in this study is a "reverse" damper with 42 states which is controlled by a stepper motor. Experimental results have shown that semi-active suspensions have potential to improve ride quality of automobiles.tomobiles.

A Robust Disturbance Observer for Uncertain Linear Systmes (불확실한 성형시스템에 대한 강인 외란관측기)

  • Kim, Jun-Sik;O, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2731-2743
    • /
    • 1996
  • When modeling error is large of plant is time-varying, it is hard to obtain good robust performance and robust stability by conventional contorl methods. Here, we need to design a robust controller bearing modeling error. In this paper, based on recently developed Time Delay Control(TDC) and Disturbance Observer the output feedback Robust Disturbance Observer(RDO), which is easily combined with general linear control, is proposed. Proposed RDO is derived from extending the main idea of Disturbance Observer to multi-input multi-output linear system. RDO solves robust stability problem of Disturbance Observer and has the robust performance same as nominal performance. RDO controlled dual stage positioning system shows excellent robust performance.

The velocity control system design of marine diesel engine with mechanical-hydraulic governor using w transformation method (w 변환에 의한 기계-유압식 조속기를 가진 선박용 디젤기관의 속도제어 시스템 설계)

  • Kang, C.N.;Park, J.G.;Chung, J.Y.;Roh, Y.O.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.696-698
    • /
    • 1997
  • The marine diesel engine have been widely applied with a mechanical hydraulic governor to control the ship speed for long time. But it was recently very difficult for the mechanical hydraulic governor to control the speed of engine under the condition of low speed and low load because of jiggling by rough fluctuation of rotating torque and hunting by dead time of diesel engine. In order to analyze the speed control system the transfer function was converted from z to w transformation. The author proposed velocity control system with feedback loop by PID controller in order to stabilize for unstable area. The influence of dead time was discussed by Nichols chart and unit step response curve. It was confirmed through computer simulation that the performance improvement of a mechanical hydraulic governor can be obtained by PID controller.

  • PDF

Design and Stability Analysis of Impedance Controller for Bilateral Teleoperation under a Time Delay

  • Cho, Hyun-Chul;Park, Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1131-1139
    • /
    • 2004
  • A new impedance controller is proposed for bilateral teleoperation under a time delay. The proposed controller does not need to measure or estimate the time delay in the communication channel using the force loop-back. In designing a stable impedance controller, absolute stability is used as a stability analysis tool, which results in a less conservative controller than the passivity concept. Moreover, in order to remove the conservatism associated with the assumption of infinite port impedances, the boundaries of human and environment impedance are set to finite values. Based on this, this paper proposes a parameter design procedure for stable impedance controllers. The validity of the proposed control scheme is demonstrated by experiments with a 1-dof master/slave system.

A Design of Model-Following Time Delay Controller with Modified Error Feedback Controller (오차피드백 제어입력이 개선된 모델추종 시간지연제어기 설계)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.176-184
    • /
    • 2000
  • TDC(Time Delay Control) deals with the time-varying system parameters, unknown dynamics and unexpected disturbances using time delay. TDC can be divided into two separate parts: an auxiliary controller and a servo controller. The two controllers can be designed independently. The auxiliary controller is used to reduce sensitivity to parameter variations, nonlinear effects, and other disturbances. The servo controller is to reduce the error between the desired command and output. We propose the model-following time delay controller with modified error feedback controller. This was applied to follow the desired reference model for the uncertain time-varying overhead crane. The model generates the damped-out swinging motion trajectory to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. The control performance was evaluated through simulations. The theoretical results indicate that this control method shows excellent performance to an overhead crane with the uncertain time-varying parameters.

  • PDF

A study of Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Ahn, Kyoung-Kwan;Lee, Min-Su;Cho, Yong-Rae;Yoon, Ju-Hyeon;Jo, Woo-Keun;Yoon, Hong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1075-1080
    • /
    • 2007
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

  • PDF

PID Controller and Derivative-feedback Gain Design of the Direct-drive Servo Valve Using the Root Locus and Manual Tuning (근궤적과 수동 조정에 의한 직접 구동형 서보밸브의 PID 제어기 및 미분피드백 이득 설계)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.15-23
    • /
    • 2016
  • The direct-drive servo valve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the dc motor. Since the DDV structure is simple, it is less expensive, more reliable, and offers a reduced internal leakage and a reduced sensitivity to fluid contamination. The control system of the DDV is highly nonlinear due to a current limiter, a voltage limiter, and the flow-force effect on the spool motion. The shape of the step response of the DDV-control system varies considerably according to the magnitudes of the step input and the load pressure. The system-design requirements mean that the overshoots should be less than 20%, and the errors at 0.02s should be less than 2%, regardless of the reference-step input sizes of 1V and 5V and the load-pressure magnitudes of 0MPa and 20.7MPa. To satisfy the system-design requirements, the PID-controller parameters of $K_c$, $T_i$ and $T_d$, and the derivative-feedback gain of $K_{der}$ are designed using the root locus and manual tuning.

Adaptive and Robust Aeroelastic Control of Nonlinear Lifting Surfaces with Single/Multiple Control Surfaces: A Review

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.285-302
    • /
    • 2010
  • Active aeroelastic control is an emerging technology aimed at providing solutions to structural systems that under the action of aerodynamic loads are prone to instability and catastrophic failures, and to oscillations that can yield structural failure by fatigue. The purpose of the aeroelastic control among others is to alleviate and even suppress the vibrations appearing in the flight vehicle subcritical flight regimes, to expand its flight envelope by increasing the flutter speed, and to enhance the post-flutter behavior usually characterized by the presence of limit cycle oscillations. Recently adaptive and robust control strategies have demonstrated their superiority to classical feedback strategies. This review paper discusses the latest development on the topic by the authors. First, the available control techniques with focus on adaptive control schemes are reviewed, then the attention is focused on the advanced single-input and multi-input multi-output adaptive feedback control strategies developed for lifting surfaces operating at subsonic and supersonic flight speeds. A number of concepts involving various adaptive control methodologies, as well as results obtained with such controls are presented. Emphasis is placed on theoretical and numerical results obtained with the various control strategies.

A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory (Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구)

  • Lee, Gwan-Yeol;Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

Feedback Analysis for Tunnel Safety using displacements measured during the tunnel excavation (터널굴착에 의한 변위계측값을 활용한 역해석 기법 연구)

  • Park, Si-Hyun;Song, Won-Gen;Oh, Young-Seok;Shin, Yong-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.199-204
    • /
    • 2007
  • This research aimed at to develop a quantitative assesment technique which uses the measured displacements at the excavated plane during tunnel construction. Tunnel structure has a feature with long extents comparing to the excavated section so that the tunnel safety assesment is more effective by using the measured data of displacements. Tunnel structures show different structural behaviors due to the mechanical characteristics of ground and supports themselves, excavation methods and construction methods of supports, etc. From this point of view, it has very important meanings on the practical aspects that the measured data from the construction cite represent the features of the interaction effects between ground and supports as they are. In this study, both the stress state and the properties of surrounding ground are analyzed by newly incorporated feedback analysis technique which can use the measured displacements directly. Then, the stress state and the properties of ground will be used to obtain the strain distribution of surrounding ground. Finally the tunnel safety can be assessed by comparing the estimated strain through the analysis to the allowable strain of ground quantitatively.

  • PDF