• Title/Summary/Keyword: mechanical assessment

Search Result 1,354, Processing Time 0.026 seconds

An Experimental Study on High Temperature Material Properties of Welded Joint (용접부의 고온 재료물성에 대한 실험적 연구)

  • Baek, Un-Bong;Yun, Gi-Bong;Seo, Chang-Min;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3096-3103
    • /
    • 2000
  • High temperature material properties of a welded joint were experimentally studied. Tensile and creep properties were measured for each part of weld metal. HAZ(heat affected zone) and parent metal at 538$^{\circ}C$. HAZ metal was obtained by a simulated heat treatment. Results showed that the order of tensile strength is weld>HAZ> parent both at 24$^{\circ}C$ and at 538$^{\circ}C$. Creep resistance was also the highest for weld metal and lowest for parent metal. Creep rupture life curves were obtained and converted to Monkman-Grant relation which is useful for life assessment. Use of the data obtained in this study is discussed.

Creep-Fatigue Crack Growth at CrMo Steel Weld Interface (CrMo강 용접계면균열의 크리프-피로 균열성장거동)

  • Baek, Un-Bong;Yoon, Kee-Bong;Lee, Hae-Moo;Suh, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3088-3095
    • /
    • 2000
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of lCr-5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_r$parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of (da/dt)$_{avg}$ vs. ($C_t$)$_{avg}$ for residual life assessment.

Characteristic Accelerated Aging Assessment for Coolant Rubber Hose of Automotive Radiator (자동차 냉각기 고무호스의 가속 노화거동 평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Kang, Bong-Sung;Shin, Sei-Moon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.27-31
    • /
    • 2006
  • Rubber hoses for automobile radiators are apt to degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. The aging behaviors of the skin part of the hoses due to thermo-oxidative and electro-chemical stresses were experimentally analyzed. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain as the aging time and temperature were large. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens influenced by electro-chemical degradation (ECD) test increased, whereas their failure strain and IRHD hardness decreased. The hardness decreased further as the test site on the hose skin approached to the negative pole.

  • PDF

Stress Analysis and Residual Life Assessment of T-piece of High Temperature Pipe (고온배관 T-부의 응력해석 및 잔여수명평가)

  • Kwon, Yang-Mi;Ma, Young-Wha;Cho, Seong-Wook;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.34-41
    • /
    • 2005
  • For assessing residual lift of the steam pipe in fossil power plants, inspections and analysis are usually focused on the critical locations such as butt welds, elbows, Y-piece and T-piece of the steam pipes. In predicting the residual life of T-piece, determination of local stress near welds considering system load as well as internal pressure is not a simple problem. In this study, stress analysis of a T-piece pipe was conducted using a three-dimensional model which represents the T-piece of a domestic fossil power station. Elastic and elastic-creep analysis showed the maximum stress level and its location. Residual creep rupture life was also calculated using the stress analysis results. It was argued that the calculated life is reasonably same as the measured one. The stress analysis results also support life prediction methodology based on in-field replication technique.

Improvement of the subcooled boiling model for the prediction of the onset of flow instability in an upward rectangular channel

  • Wisudhaputra, Adnan;Seo, Myeong Kwan;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1126-1135
    • /
    • 2022
  • The MARS code has been assessed for the prediction of onset of flow instability (OFI) in a vertical channel. For assessment, we built an experiment database that consists of experiments under various geometry and thermal-hydraulic condition. It covers pressure from 0.12 to 1.73 MPa; heat flux from 0.67 to 3.48 MW/m2; inlet sub-cooling from 39 to 166 ℃; hydraulic diameters between 2.37 and 6.45 mm of rectangular channels and pipes. It was shown that the MARS code can predict the OFI mass flux for pipes reasonably well. However, it could not predict the OFI in a rectangular channel well with a mean absolute percentage error of 8.77%. In the cases of rectangular channels, the error tends to depend on the hydraulic diameter. Because the OFI is directly related to the subcooled boiling in a flow channel, we suggest a modified subcooled boiling model for better prediction of OFI in a rectangular channel; the net vapor generation (NVG) model and the modified wall evaporation model were modified so that the effect of hydraulic diameter and heat flux can be accurately considered. The assessment of the modified model shows the prediction of OFI mass flux for rectangular channels is greatly improved.

A Case Study on the Application of Flipped Learning Methodology to Thermodynamics in Mechanical Engineering (열역학 교과목에 대한 플립러닝 교수법 적용 사례)

  • Ryu, Kyunghyun
    • Journal of Engineering Education Research
    • /
    • v.25 no.6
    • /
    • pp.69-80
    • /
    • 2022
  • In this study, the application of flipped learning methodology to thermodynamics in mechanical engineering was examined, and how university students view flipped learning and the effects of flipped learning were analyzed. To analyze the effects of flipped learning, pre-class survey, assessment on learning in pre-class, team activities during class, and post-class survey were conducted. The analysis was also conducted on 33 students who took the thermodynamics course in mechanical engineering, and the PARTNER flipped learning model was applied to the class. The results of this study are as follows; In the preliminary survey, the students expected that the flip-learning class with team activities and teaching between team members would be helpful in improving their learning. In addition, students recognized that cooperative learning through a team was helpful for learning. The case reflecting the result of pre-learning evaluation to the subject grades showed higher pre-learning evaluation results than the case not reflecting the result of the pre-learning evaluation to the subject grades, and it was found that the pre-learning evaluation was acting as a factor to promote learning in pre-class. In post-class survey, the satisfaction with the flipped learning class was high, indicating that the effectiveness of the flipped learning class applied to the thermodynamics class was excellent.

Assessment and Improvement of the Horizontal In-Tube Condensation Heat Transfer Model in the MARS code (MARS 코드의 수평관내부 응축열전달 모델 평가 및 개선)

  • Lee, Hyun Jin;Ahn, Tae Hwan;Yun, Byong Jo;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.56-68
    • /
    • 2016
  • Extensive researches have been carried out for enhancing the safety of nuclear power plants and, especially, the development of passive cooling systems, such as passive containment cooling system (PCCS) and passive residual heat removal system, is increasingly important, where condensation is a crucial heat transfer mechanism. Recently, Ahn & Yun et al. developed a horizontal in-tube condensation heat transfer model as one of the activities for the PCCS development. In this work, we implemented the Ahn & Yun 's condensation heat transfer model into the MARS code and assessed it using the PASCAL experimental data. Based on the results of the assessment, we identified the limitations of the Ahn & Yun 's model and suggested a modified Ahn & Yun 's model, and assessed the model using various experimental data.

RESEARCH ON MODULARIZED DESIGN AND PERFORMANCE ASSESSMENT BASED ON MULTI-DRIVER OFF-ROAD VEHICLE DRIVING-LINE

  • Yi, J.J.;Yu, B.;Hu, D.Q.;Li, C.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.375-382
    • /
    • 2007
  • The multi-driver off-road vehicle drive-line consists of many components, with close connections among them. In order to design and analyze the drive-line efficiently, a modular methodology should be taken. The aim of a modular approach to the modeling of complex systems is to support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Multi-driver off-road vehicles are comparatively complicated. The driving-line is an important core part to the vehicle, it has a significant contribution to the performance. Multi-driver off-road vehicles have complex driving-lines, so performance is heavily dependent on the driving-line. A typical off-road vehicle's driving-line system consists of a torque converter, transmission, transfer case and driving-axles, which transfers the power generated by the engine and distributes it effectively to the driving wheels according to the road condition. According to its main function, this paper proposes a modularized approach for design and evaluation of the vehicle's driving-line. It can be used to effectively estimate the performance of the driving-line during the concept design stage. Through an appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-driver off-road vehicles.

Life Prediction of Elastomeric U Seals in Hydraulic/Pneumatic Actuators Using NSWC Handbook (NSWC를 활용한 유공압 액추에이터 U 형 씰의 수명예측)

  • Shin, Jung Hun;Chang, Mu Seong;Kim, Sung Hyun;Jung, Dong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1379-1385
    • /
    • 2014
  • Even the rough prediction of the product test time before the lifetime test of mechanical component begins would be of use in estimating cost and deciding how to keep up with the test. The reliability predictions of mechanical components are difficult because failure or degradation mechanisms are complicated, and few plausible databases are available for lifetime prediction. Therefore, this study conducted lifetime predictions of elastomeric U seals that were respectively installed in a hydraulic actuator and a pneumatic actuator using lifetime models and a field database based on failure physics and an actual test database obtained from the NSWC handbook. To validate the results, the predicted failure rates were compared with the actual lifetime test results acquired in the lab durability tests. Finally, this study discussed an engineering procedure to determine the coefficients in the failure rate models and analyzed the sensitivity of each influential parameter on the seal lifetime.

Development of Numerical CCM in Pursuit of Accuracy Assessment for Coordinate Measuring Machines (정밀도 성능평가를 위한 3차원 측정기 수치모델 개발)

  • Park, Hui-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.945-959
    • /
    • 1996
  • In this paper, a comprehensive computer model is described which can be used to generate the volumetric error map combining the machine parametric errors and the measurement prove error, for most types of CMMs and axis configurations currently in use.