DOI QR코드

DOI QR Code

Assessment and Improvement of the Horizontal In-Tube Condensation Heat Transfer Model in the MARS code

MARS 코드의 수평관내부 응축열전달 모델 평가 및 개선

  • Lee, Hyun Jin (School of Mechanical Engineering, Pusan National University (PNU)) ;
  • Ahn, Tae Hwan (School of Mechanical Engineering, Pusan National University (PNU)) ;
  • Yun, Byong Jo (School of Mechanical Engineering, Pusan National University (PNU)) ;
  • Jeong, Jae Jun (School of Mechanical Engineering, Pusan National University (PNU))
  • Received : 2015.12.15
  • Accepted : 2016.01.29
  • Published : 2016.03.31

Abstract

Extensive researches have been carried out for enhancing the safety of nuclear power plants and, especially, the development of passive cooling systems, such as passive containment cooling system (PCCS) and passive residual heat removal system, is increasingly important, where condensation is a crucial heat transfer mechanism. Recently, Ahn & Yun et al. developed a horizontal in-tube condensation heat transfer model as one of the activities for the PCCS development. In this work, we implemented the Ahn & Yun 's condensation heat transfer model into the MARS code and assessed it using the PASCAL experimental data. Based on the results of the assessment, we identified the limitations of the Ahn & Yun 's model and suggested a modified Ahn & Yun 's model, and assessed the model using various experimental data.

최근 원자력 발전소의 안전성을 획기적으로 향상시키기 위한 연구가 활발하게 진행되고 있으며 특히 피동냉각계통의 연구개발이 아주 중요하게 부각되고 있다. 피동냉각계통의 열전달 방식으로는 응축열전달 양식이 주로 채택되고 있다. 이와 같은 맥락에서 부산대학교 Ahn & Yun (Ahn 등, 2014)은 새로운 수평관내부 응축 모델을 제시한 바 있다. 본 연구에서는 먼저 Ahn & Yun 이 제시한 수평관 응축 모델을 MARS 코드에 삽입하고 PASCAL 실험데이터를 이용하여 평가하였다. 이 평가결과를 통해 Ahn & Yun 모델의 코드적용에 있어 문제점을 규명하고 새로운 적용방법론을 적용하여 다양한 실험데이터로 다시 평가함으로써 MARS 코드의 향상된 응축 열전달 해석 능력을 확인하였다.

Keywords

References

  1. Schaffrath, A., Prasser, H.M., Forschungszentrum Rossendorf e.V, Dresden, "Theoretical support to the NOKO experiments." FZR-224, Forschungszentrum Rossendorf (1998).
  2. Kondo M., and H. Nakamura., Y. Kukita, T. Kurita, K. Arai, and T. Okazaki, "Primary-side two-phase flow and heat transfer characteristics of a horizontal-tube PCCS condenser." ICONE14, 89652 (2006).
  3. Wu, T. "Horizontal in-tube condensation in the presence of a non-condensable gas," PhD. Dissertation, Purdue university (2005).
  4. KAERI. "Experimental study on cooling performance for PAFS (Passive Auxiliary Feed-water System) with the separate-effect test facility" 9-017- A599-002-053, Rev.00 (2012).
  5. KAERI, "Integral effect test on operational performance of the PAFS (Passive Auxiliary Feedwater System) for a FLB (Feed-water Line Break) accident", 9-017-A599-002-059, Rev.00 (2012)
  6. C.W. Shin, "Condensation experiment of high pressure steam in an inclined single tube of passive auxiliary feedwater system in APR+" KAIST Master's Thesis (2012).
  7. J.J. Jeong, K.S. Ha, B.D. Chung and W.J. Lee, "Development of A Multi-dimensional Thermal- Hydraulic System Code, MARS 1.3.1," Annals of Nuclear Energy, vol. 26, no. 18, pp. 1611-1642 (1999). https://doi.org/10.1016/S0306-4549(99)00039-0
  8. T.H. Ahn, B.J. Yun, J.J. Jeong, K.H. Kang, Y.S. Park, "Development of a new condensation model for the nearly horizontal heat exchanger tube under the steam flowing conditions", International Journal of Heat and Mass Transfer (2014).
  9. Chato, J.C.,"Laminar condensation inside horizontal and inclined tubes." ASHRAE J. 4 (2), 52-60 (1962).
  10. Shah, M. M. "A general correlation for heat transfer during film condensation inside pipes." International Journal of Heat and Mass Transfer 22.4 547-556 (1979). https://doi.org/10.1016/0017-9310(79)90058-9
  11. Nusselt, W. "The surface condensation of water vapour." Zeitschrift Des Vereines Deutscher Ingenieure 60, 541-546 (1916).
  12. Dittus, F. W., and L. M. K. Boelter. "Heat transfer in automobile radiators of the tubular type." International Communications in Heat and Mass Transfer 12(1) 3-22 (1985). https://doi.org/10.1016/0735-1933(85)90003-X