• Title/Summary/Keyword: mechanical agitation

Search Result 82, Processing Time 0.025 seconds

A Numerical Analysis on Effect of Baffles in a Stirred Vessel (교반탱크에서 베플 형상의 영향에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The flow characteristics in a stirred tank are very useful in a wide variety of industrial applications. Generally, the flow pattern, power consumption and mixing time in stirred vessels depend not only on the design of the impeller, but also on the tanks' geometry and internal structure. In this study, the analysis of an unstable and unsteady complicated flow characteristics generated by the interaction between the baffle shape and impeller were performed using the ANSYS FLUENT LES Turbulence Model. The study compared the predictions of CFD with the interaction between two types of rotating impellers (axial and radial flows) and the shapes of three baffles. The results of the comparison verified that the design model showed a relatively efficient trend in the mixing flow fields and characteristics around the impeller and baffles during agitation.

Factors associated with Pediatric Delirium in the Pediatric Intensive Care Unit (소아중환자실 입원 아동의 섬망 발생 관련 요인)

  • Kim, Hyo Jin;Kim, Dong Hee
    • Child Health Nursing Research
    • /
    • v.25 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • Purpose: This study aimed to investigate incidence of delirium in the pediatric intensive care unit (PICU) and to analyze associated risk factors. Methods: The participants were 95 patients, newborn to 18 years, who were admitted to the PICU. The instruments used were the Richmond Agitation Sedation Scale (RASS), and the Cornell Assessment of Pediatric Delirium. Data analysis was performed using the descriptive, $x^2$ test, t-test, and logistic regression analyses. Results: The incidence of delirium in children admitted to the PICU was 42.1%. There were significant differences according to age ($x^2=14.10$, p=.007), admission type ($x^2=7.40$, p=.007), use of physical restraints ($x^2=26.11$, p<.001), RASS score ($x^2=14.80$, p=.001), need for oxygen ($x^2=5.31$, p=.021), use of a mechanical device ($x^2=9.97$, p=.041), feeding ($x^2=7.85$, p=.005), and the presence of familiar objects ($x^2=29.21$, p<.001). Factors associated with the diagnosis of delirium were the use of physical restraint (odds ratio [OR]=13.82, 95% confidence interval [CI]=4.16~45.95, p<.001) and the presence of familiar objects (OR=0.09, 95% CI=0.03~0.30, p=.002). Conclusion: Periodic delirium assessments and intervention should be actively performed. The use of restraints should be minimized if possible. The caregiver should surround the child with familiar objects and ensure a friendly hospital environment that is appropriate for the child.

Effect of degumming conditions on the fluorescence intensity of fluorescent silk cocoons: A combined experimental and molecular dynamics study

  • Chan Yeong, Yu;Ezekiel Edward, Nettey-Oppong;Elijah, Effah;Su Min, Han;Seong-Wan, Kim;Seung Ho, Choi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.56-69
    • /
    • 2022
  • Silk is a unique natural biopolymer with outstanding biocompatibility, high mechanical strength, and superior optical transparency. Due to its excellent properties, silk has been widely reported as an ideal biomaterial for several biomedical applications. Recently, fluorescent silk protein, a variant of native silk, has been reported as a biophotonic material with the potential for bioimaging and biosensing. Despite the realization of fluorescent silk, the traditional degumming process of fluorescence silk is crude and often results in fluorescence loss. The loss of fluorescent properties is attributed to the sensitivity of silk fibroin to temperature and solvent concentration during degumming. However, there is no comprehensive information on the influence of these processing parameters on fluorescence evolution and decay during fluorescent silk processing. Therefore, we conducted a spectroscopic study on fluorescence decay as a function of temperature, concentration, and duration for fluorescent silk cocoon degumming. Sodium carbonate solution was tested for degumming the fluorescent silk cocoons with different concentrations and temperatures; also, sodium carbonate solution is combined with Alcalase enzyme and triton x-100 to find optimal degumming conditions. Additionally, we conducted a molecular dynamics study to investigate the fundamental effect of temperature on the stability of the fluorescent protein. We observed degumming temperature as the prime source of fluorescent intensity reduction. From the MD study, fluorescence degradation originated from the thermal agitation of fluorescent protein Cα atoms and fluctuations of amino acid residues located in the chromophore region. Overall, degumming fluorescent silk with sodium carbonate and Alcalase enzyme solution at 25 ℃ preserved fluorescence.

Morphology of Methane/Propane Clathrate Hydrate Crystal (메탄/프로판 포접 하이드레이트 결정의 성장 특성)

  • Lee, Ju Dong;Englezos, Peter;Yoon, Yong Seok;Song, Myungho
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.400-409
    • /
    • 2007
  • Morphology of methane/propane clathrate hydrate crystal was investigated under different undercooling conditions. After the water pressurized with compound guest gas was fully saturated by agitation, medium within the vessel was rapidly undercooled and maintained at the constant temperature while the visual observations using microscope revealed detailed features of subsequent crystal nucleation, migration, growth and interference occurring within liquid pool. The growth of hydrate was always initiated with film formations at the bounding surface between bulk gas and liquid regions under all tested experimental conditions. Then a number of small crystals ascended, some of which settled beneath the hydrate film. When undercooling was relatively small, some of the settled crystals slowly grew into faceted columns. As the undercooling increased, the downward growth of crystals underneath the hydrate film became dendritic and occurred with greater rate and with finer arm spacing. The shapes of the floating crystals within liquid pool were diverse and included octahedron and triangular or hexagonal platelet. When the undercooling was small, the octahedral crystals were found dominant. As the undercooling increased, the shape of the floating crystals also became dendritic. The detailed growth characteristics of floating crystals are reported focused on the influences caused by undercooling and memory effect.

Accelerating Effects of Ultrasonic Irradiation on Reaction Rates for the Asymmetric Ring Opening Reaction of Epoxides (초음파 조사에 의한 에폭사이드 비대칭 고리열림 반응의 속도 증진 효과)

  • Lee, Yae Won;Park, Geun Woo;Kim, Geon Joong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.365-370
    • /
    • 2019
  • In this study, effects of the ultrasonic irradiation during the reaction process were investigated for the enantioselective kinetic resolution (EKR) reaction of racemic epoxides in the presence of chiral cobalt salen catalysts, as compared to that of using the conventional mechanical stirring. In order to compare catalytic activities, the chiral cobalt salen complexes having $AlCl_3-$, $BF_3-$ and nitrobenzenesulfonic acid (NBSA) were synthesized and used as catalysts, and then three kinds of the racemic epoxides such as ephichlorohydrine (ECH), epoxy phenoxypropane (EPP) and propylene oxide (PO) were used as reactants. In addition, EKR reactions have been performed using the water and methanol as nucleophiles, respectively. The unique contribution of ultrasonic irradiation as a powerful mixing medium was evaluated in this study to improve the kinetics in comparison to the conventional mechanical agitation during EKR reactions. The reaction time to obtain the highest 99 ee% became shorten more than that of above 60%, when the ultrasonic irradiation was used. This result may be interpreted by the cavitation effect of ultrasound in the solution, generating a powerful shear force for the very violent mixing.

Quality Enhancement of Recycled Concrete Aggregates for Backfill Materials by CO2 Carbonation: Development of a 5-kg-scale Prototype Reactor (이산화탄소의 탄산화 반응을 이용한 되메움재용 순환골재의 품질 개량: 5kg급 프로토타입 반응조 개발)

  • Kim, Jinwoo;Jeon, Min-Kyung;Kwon, Tae-Hyuk;Kim, Nam-Ryong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.29-37
    • /
    • 2024
  • In this study, recycled concrete aggregates (RCA) were treated in a 5-kg-scale prototype reactor with carbon dioxide (CO2) to enhance their material quality and geotechnical performance. The aggregate crushing value (ACV) and California bearing ratio (CBR) were measured on untreated RCAs and CO2-treated RCAs. After CO2 treatment, the ACV decreased from 35.6% to 33.2%, and the CBR increased from 97.5% to 102.4%. The CO2 treatment caused a reduction of fine particle generation and an increase in bearing capacity through carbonation. When CO2 treatment was performed with mechanical agitation, which provided additional enhancement in mechanical quality, the ACV was reduced further to 30.3%, and the CBR increased to 137.7%. If upscaled effectively, the proposed CO2 treatment technique would be an effective method to reduce carbon emissions in construction industries.

Application of Microwave-HClO Leaching for On-board Recovery of Au in Hydrothermal Minerals (열수광물내 Au의 선상회수를 위한 마이크로웨이브-차아염소산 용출 적용성)

  • Kim, Hyun Soo;Myung, Eun Ji;Kim, Min Sung;Lee, Sung-Jae;Park, Cheon-young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.243-250
    • /
    • 2020
  • The purpose of this study is to find out the possibility of applying microwave-hypochlorous acid leaching to effectively leaching Au in hydrothermal minerals on board. The comparative leaching experiment were confirmed that the leaching rate of Au with(T1)/with out(T2) of microwave nitric acid leaching. In addition, the leaching rate of Au on the conventional leaching by mechanical agitation(T3) and microwave leaching was compared. The result of microwave nitric acid leaching(solid-liquid ratio; 10%, leaching temperature; 90 ℃, leaching time; 20 min) confined that the metal leaching rate was high in the order of As>Pb>Cu>Fe>Zn, and the content of Au in the leaching residue was increased from 33.77 g/ton to 60.02 g/ton. As a result of the comparative leaching experiment using a chloride solvent, the dissolution rate of Au was high in the order of T1(61.10%)>T3(53.30%)>T2(17.30%). Therefore, chloride, which can be manufactured using seawater and that can be recycled by collecting chlorine gas generated in the leaching process, is expected to be an optimal solvent for Au leaching. In addition, the application of microwaves is believed to be effective in terms of time, efficiency and energy.

Dispersion Characteristics of Carbon Black Particles in a High Viscous Simulated Solution (고점성 모사용액 내 Carbon Black 입자의 분산특성)

  • Jeong, Kyung-Chai;Eom, Sung-Ho;Kim, Yeon-Ku;Cho, Moon Sung
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • An external gelation method in place of an internal gelation method applied to the fabrication process of an intermediated compound of Uranium Oxy-Carbide (UCO) kernel spheres for Very High Temperature Reactor (VHTR) fuel preparation is under development in Korea. For the preliminary experiments of the UCO kernel sphere preparation using an external gelation method, the carbon black dispersion experiments were carried out using a simulated broth solution. From the selection experiments of various kinds of carbon black through dispersion experiments in a viscous metal salt solution, Cabot G carbon black was selected owing to its dispersion stability, and the homogeneous dispersing state of carbon black particles in our system. For the effective dispersion of nano-size aggregated carbon black particles in a high viscous liquid, the carbon black particles in a metal salt solution were first de-aggregated with ultrasonic force. The mixed solution was then dispersed secondly by the use of the extremely high-speed agitation with a mechanical mixer of 6000 rpm after feeding the Poly Vinyl Alcohol (PVA) in the solution. This results in the broth solution with good stability and homogeneity alongside no further changes in physical properties.

Review of root canal irrigant delivery techniques and devices (최신 근관 세척 방법과 기구에 대한 고찰)

  • Yoo, Yeon-Jee;Shin, Su-Jeong;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.3
    • /
    • pp.180-187
    • /
    • 2011
  • Introduction: Eliminating the residual debris and bacteria in the root canal system is one of the main purposes of the endodontic treatment. However, the complexity on the anatomy of the root canal system makes it difficult to eliminate the bacterial biofilm existing along the root canal surface and necrotic pulp tissue by mechanical instrumentation and chemical irrigation. Recently, more effective irrigant delivery systems for root canal irrigation have been developed. The purpose of this review was to present an overview of root canal irrigant delivery techniques and devices available in endodontics. Review: The contents of this paper include as follows; - syringe-needle irrigation, manual dynamic irrigation, brushes - sonic and ultrasonic irrigation, passive ultrasonic irrigation, rotary brush, RinsEndo, EndoVac, Laser Conclusion: Though technological advances during the last decade have brought to fruition new agitation devices that rely on various mechanisms, there are few evidence based study to correlate the clinical efficacy of these devices with improved outcomes except syringe irrigation with needle and ultrasonic irrigation. The clinicians should try their best efforts to deliver antimicrobial and tissue solvent solutions in predictable volumes safely to working length.

KINETIC STUDIES OF LACTIC ACID FERMENTATION(PART 2) INFLUENCE OF TEMPERATURE ON FERMENTATION (유산균 발효에 관한 동력학적 연구(제2보) 발효에 미치는 온도의 영향)

  • LEE Keun-Tai;LEE Myeong-Sook;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.161-166
    • /
    • 1979
  • To know the influence of temperature on the fermentation process, a strain of Lactobacillus bulgarius was experimentally cultured three different temperature conditions of $39^{\circ}C,\;42^{\circ}C\;and\;45^{\circ}C$, pH 5.8 and mechanical agitation of 500rpm. During 20 hour's fermentation, the microbial growth attained the maximum concentration under the conditions mentioned above. However, the culturing conditions resulted different outcomes in terms of maximum concentration of the microbes and the residual concentration of substrate. Among the three temperature conditions, the fermentation at $45^{\circ}C$ was most effective and the maximum specific growth temperature conditions, the fermentation at $45^{\circ}C$ was most effective and the maximum specific growth rate was 0.58/hr. Activation energy deduced from the Arrhenius equation was 9,220cal/mole and entropy was $-33.74\;cal/^{\circ}K$ mole. Activation enthalpy was 9,845 cal/mole and free energy was 19,800 cal/mole.

  • PDF