DOI QR코드

DOI QR Code

Application of Microwave-HClO Leaching for On-board Recovery of Au in Hydrothermal Minerals

열수광물내 Au의 선상회수를 위한 마이크로웨이브-차아염소산 용출 적용성

  • 김현수 (조선대학교 에너지자원공학과) ;
  • 명은지 (조선대학교 에너지자원공학과) ;
  • 김민성 (조선대학교 에너지자원공학과) ;
  • 이성재 ((주)에이이) ;
  • 박천영 (조선대학교 에너지자원공학과)
  • Received : 2020.09.02
  • Accepted : 2020.09.23
  • Published : 2020.09.30

Abstract

The purpose of this study is to find out the possibility of applying microwave-hypochlorous acid leaching to effectively leaching Au in hydrothermal minerals on board. The comparative leaching experiment were confirmed that the leaching rate of Au with(T1)/with out(T2) of microwave nitric acid leaching. In addition, the leaching rate of Au on the conventional leaching by mechanical agitation(T3) and microwave leaching was compared. The result of microwave nitric acid leaching(solid-liquid ratio; 10%, leaching temperature; 90 ℃, leaching time; 20 min) confined that the metal leaching rate was high in the order of As>Pb>Cu>Fe>Zn, and the content of Au in the leaching residue was increased from 33.77 g/ton to 60.02 g/ton. As a result of the comparative leaching experiment using a chloride solvent, the dissolution rate of Au was high in the order of T1(61.10%)>T3(53.30%)>T2(17.30%). Therefore, chloride, which can be manufactured using seawater and that can be recycled by collecting chlorine gas generated in the leaching process, is expected to be an optimal solvent for Au leaching. In addition, the application of microwaves is believed to be effective in terms of time, efficiency and energy.

본 연구의 목적은 선상에서 열수광물 내 Au를 효과적으로 용출하기 위한 마이크로웨이브-차아염소산 용출의 적용 가능성을 파악하는 것이다. 비교용출실험은 마이크로웨이브 질산용출의 유(T1)/무(T2)에 따른 Au 용출율의 영향을 확인하였다. 또한, 기계적 교반에 의한 전통적인 용출(T3)과 마이크로웨이브 용출에 따른 Au 용출율을 비교하였다. 마이크로웨이브 질산용출결과(고액비; 10%, 용출온도; 90℃, 용출시간; 20분), 금속의 용출율은 As>Pb>Cu>Fe>Zn 순으로 높게 나타났으며, 용출잔사 내 Au의 함량은 33.77 g/ton에서 60.02 g/ton으로 증가하였다. 염화물 용매제를 이용한 비교용출실험 결과, Au의 용출율은 T1(61.10%)>T3(53.30%)>T2(17.30%)순으로 높게 나타났다. 따라서, 해수를 이용하여 제조 가능하고 용출과정에서 발생되는 염소 가스를 포집하여 재이용 가능한 염화물은 Au용출을 위한 최적의 용매제로 예상된다. 또한 마이크로웨이브를 적용함으로써 시간, 효율 및 에너지 측면에서 효과적일 것으로 판단되어진다.

Keywords

References

  1. Bayca, S.U., 2013, Microwave radiation leaching of colemanite in sulfuric acid solutions. Separation and Purification Technology, 105, 24-32. https://doi.org/10.1016/j.seppur.2012.11.014
  2. Bortnikov, N., Cabri, L., Vikentiev, I., Tagirov, B., Mc Mahon, G., Bogdanov, Y.A. and Stavrova, O., 2003, Invisible gold in sulfides from seafloor massive sulfide edifices. Geology of Ore Deposits C/C of Geologiia Rudnykh Mestorozhdenii, 45, 201-212.
  3. Cho, K.H., Kim, B.J., Oh, S.J., Choi, S.H., Choi, N.C., Park, C.Y., 2012, The Leaching of Gold-silver from Refractory Gold Concentrate by Chlorine-hypochlorite Solution. The Mineralogical Society of Korea, 25(3), 123-130. https://doi.org/10.9727/jmsk.2012.25.3.123
  4. Celep, O., Yazici, E.Y., Deveci, H., 2017, A Preliminary Study on Nitric Acid Pre-treatment of Refractory Gold/silver Ores. 25th International Mining Congress and Exhibition of Turkey, 1, 463-468.
  5. Celep, O., Altinkaya, P., Yazici, E. and Deveci, H., 2018, Nitric Acid Leaching for Pre-Treatment of a Copper Bearing Auroferrous Pyritic Concentrate. XXIX International Mineral Processing Congress, 17-21, 184.
  6. Dutrizac, J., 1992, The leaching of sulphide minerals in chloride media. Hydrometallurgy, 29, 1-45. https://doi.org/10.1016/0304-386X(92)90004-J
  7. Fallon, E.K., Niehorster, E., Brooker, R.A. and Scott, T.B., 2018, Experimental leaching of massive sulphide from TAG active hydrothermal mound and implications for seafloor mining. Marine pollution bulletin, 126, 501-515. https://doi.org/10.1016/j.marpolbul.2017.10.079
  8. Gokelma, M., Birich, A., Stopic, S. and Friedrich, B., 2016, A review on alternative gold recovery re-agents to cyanide. Journal of Materials Science and Chemical Engineering, 4, 8.
  9. Guo, X., Li, D., Park, K.H., Tian, Q. and Wu, Z., 2009, Leaching behavior of metals from a limonitic nickel laterite using a sulfation-roasting-leaching process, Hydrometallurgy. 99, 144-150. https://doi.org/10.1016/j.hydromet.2009.07.012
  10. Halbach, P., Pracejus, B. and Maerten, A., 1993, Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Economic Geology, 88(8), 2210-2225. https://doi.org/10.2113/gsecongeo.88.8.2210
  11. Hasab, M.G., Raygan, S. and Rashchi, F., 2013, Chloride–hypochlorite leaching of gold from a mechanically activated refractory sulfide concentrate. Hydrometallurgy, 138, 59-64. https://doi.org/10.1016/j.hydromet.2013.06.013
  12. Huang, J.H., 2000, The applications of microwave energy to improve grindability and extraction of gold ores. PhD thesis, The University of Birmingham, Uk.
  13. Huang, J. and Rowson, N., 2002, Hydrometallurgical decomposition of pyrite and marcasite in a microwave field. Hydrometallurgy, 64, 169-179. https://doi.org/10.1016/S0304-386X(02)00041-5
  14. Kim, B.J., Cho, K.H., Oh, S.J., Choi, S.H., Choi, N.C., Park, C.Y., 2013, Mineralogical Phase Transform of Saltroasted Concentrate and Enhancement of Gold Leaching by Chlorine-hypochlorite Solution. The Mineralogical Society of Korea, 26(1), 9-18. https://doi.org/10.9727/jmsk.2013.26.1.9
  15. Kowalczuk, P.B., Snook, B., Kleiv, R.A. and Aasly, K., 2018, Efficient extraction of copper and zinc from seafloor massive sulphide rock samples from the Loki's Castle area at the Arctic Mid-Ocean Ridge. Minerals Engineering, 115, 106-116. https://doi.org/10.1016/j.mineng.2017.10.015
  16. Kowalczuk, P.B., Bouzahzah, H., Kleiv, R.A. and Aasly, K., 2019, Simultaneous Leaching of Seafloor Massive Sulfides and Polymetallic Nodules. Minerals, 9, 482. https://doi.org/10.3390/min9080482
  17. Kuzugüdenli, O.E. and Kantar, C., 1999, Alternatives to gold recovery by cyanide leaching. Erciyes Universitesi Fen Bilimleri Enstitusu Dergisi, 15, 119-127.
  18. Li, D., 2009, Developments in the pretreatment of refractory gold minerals by nitric acid. The Southern African Institute of Mining and Metallurgy, 2, 145-150.
  19. Li, J., Safarzadeh, M.S., Moats, M.S., Miller, J.D., LeVier, K.M., Dietrich, M. and Wan, R.Y., 2012, Thiocyanate hydrometallurgy for the recovery of gold. Part I: Chemical and thermodynamic considerations. Hydrometallurgy, 113, 1-9. https://doi.org/10.1016/j.hydromet.2011.11.005
  20. Marsden, J. and House, I., 2006, The Chemistry of Gold Extraction. SME.
  21. Nan, X.-y., Cai, X. and Kong, J., 2014, Pretreatment process on refractory gold ores with As. ISIJ international, 54, 543-547. https://doi.org/10.2355/isijinternational.54.543
  22. Safarzadeh, M.S., Moats, M.S. and Miller, J.D., 2012, Acid bake-leach process for the treatment of enargite concentrates. Hydrometallurgy, 119, 30-39. https://doi.org/10.1016/j.hydromet.2012.03.002
  23. Rona, P.A., Bogdanov, Y.A., Gurvich, E.G., Rimski-Korsakov, N.A., Sagalevitch, A.M., Hannington, M.D. and Thompson, G., 1993, Relict Hydrothermal Zones in the TAG Hydrothermal Field, Mid-Atlantic Ridge $26^{\circ}N,\;45^{\circ}W$. JGR Solid Earth, 98, 9715-9730.
  24. Rosenholtz, J.L. and Smith, D.T., 1936, The dielectric constant of mineral powders. American Mineralogist: Journal of Earth and Planetary Materials, 21, 115-120.
  25. Sparrow, G.J. and Woodcock, J.T., 1995, Cyanide and other lixiviant leaching systems for gold with some practical applications. Mineral Processing and Extractive Metullargy Review, 14, 193-247. https://doi.org/10.1080/08827509508914125
  26. Syed, S., 2012, Recovery of gold from secondary sources-A review. Hydrometallurgy, 115: 30-51. https://doi.org/10.1016/j.hydromet.2011.12.012
  27. Veres, J., Jakabsky, S. and LOVaS, M., 2010, Comparison of conventional and microwave assisted leaching of zinc from the basic oxygen furnace dust. Miner. Slovaca, 42, 369-374.
  28. Yu, L., Li, S., Liu, Q., Deng, J., Luo, B., Liang, Y., Zhao, L. and Lai, H., 2019, Gold recovery from refractory gold concentrates by pressure oxidation pre-treatment and thiosulfate leaching. Physicochemical Problems of Mineral Processing, 55(2), 537-551.