Browse > Article
http://dx.doi.org/10.7852/ijie.2022.45.2.56

Effect of degumming conditions on the fluorescence intensity of fluorescent silk cocoons: A combined experimental and molecular dynamics study  

Chan Yeong, Yu (Department of Biomedical Engineering, Yonsei University)
Ezekiel Edward, Nettey-Oppong (Department of Biomedical Engineering, Yonsei University)
Elijah, Effah (Department of Biomedical Engineering, Yonsei University)
Su Min, Han (Department of Biomedical Engineering, Yonsei University)
Seong-Wan, Kim (Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration)
Seung Ho, Choi (Department of Biomedical Engineering, Yonsei University)
Publication Information
International Journal of Industrial Entomology and Biomaterials / v.45, no.2, 2022 , pp. 56-69 More about this Journal
Abstract
Silk is a unique natural biopolymer with outstanding biocompatibility, high mechanical strength, and superior optical transparency. Due to its excellent properties, silk has been widely reported as an ideal biomaterial for several biomedical applications. Recently, fluorescent silk protein, a variant of native silk, has been reported as a biophotonic material with the potential for bioimaging and biosensing. Despite the realization of fluorescent silk, the traditional degumming process of fluorescence silk is crude and often results in fluorescence loss. The loss of fluorescent properties is attributed to the sensitivity of silk fibroin to temperature and solvent concentration during degumming. However, there is no comprehensive information on the influence of these processing parameters on fluorescence evolution and decay during fluorescent silk processing. Therefore, we conducted a spectroscopic study on fluorescence decay as a function of temperature, concentration, and duration for fluorescent silk cocoon degumming. Sodium carbonate solution was tested for degumming the fluorescent silk cocoons with different concentrations and temperatures; also, sodium carbonate solution is combined with Alcalase enzyme and triton x-100 to find optimal degumming conditions. Additionally, we conducted a molecular dynamics study to investigate the fundamental effect of temperature on the stability of the fluorescent protein. We observed degumming temperature as the prime source of fluorescent intensity reduction. From the MD study, fluorescence degradation originated from the thermal agitation of fluorescent protein Cα atoms and fluctuations of amino acid residues located in the chromophore region. Overall, degumming fluorescent silk with sodium carbonate and Alcalase enzyme solution at 25 ℃ preserved fluorescence.
Keywords
Silk Fibroin; Fluorescent Protein; mKate2; Thermostability; Molecular Dynamics;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, et al. (2003) Silk-based biomaterials. Biomaterials 24, 401-416.   DOI
2 Arami M, Rahimi S, Mivehie L, Mazaheri F, Mahmoodi NM (2007) Degumming of Persian silk with mixed proteolytic enzymes. J Appl Polym Sci 106, 267-275.   DOI
3 Arooj M, Kim S, Sakkiah S, Cao GP, Lee Y, Lee KW (2013) Molecular modeling study for inhibition mechanism of human chymase and its application in inhibitor design. PLoS One 8, e62740.
4 Brooks BR, Brooks III CL, Mackerell JR AD, Nilsson L, Petrella RJ, Roux B, et al. (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30, 1545-1614.   DOI
5 Bucciarelli A, Quaranta A, Maniglio (2021) Imaging the morphological structure of silk fibroin constructs through fluorescence energy transfer and confocal microscopy. Electron Mater 2, 186-197.   DOI
6 Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server; in The Proteomics Protocols Handbook. Walker JM (eds.), pp. 571-607, Humana Press, Totowa.
7 Gil Pineda LI, Milko LN, He Y (2020) Performance of CHARMM36m with modified water model in simulating intrinsically disordered proteins: a case study. Biophys Rep 6, 80-87.   DOI
8 Hockney RW, Eastwood JW (1989) Computer simulation using particles. Adam Hilger, New York.
9 Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2019) The biomedical use of silk: past, present, future. Adv Healthc Mater 8, 1800465.
10 Hu F, Lin NB, Liu XY (2020) Interplay between light and functionalized silk fibroin and applications. Iscience 23, 101035.
11 Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, De Groot BL, et al. (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14, 71-73.   DOI
12 Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14, 33-38.   DOI
13 Iizuka T, Sezutsu H, Tatematsu K, Kobayashi I, Yonemura N, Uchino K, et al. (2013) Colored fluorescent silk made by transgenic silkworms. Adv Funct Mater 23, 5232-5239.   DOI
14 Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29, 1859-1865.   DOI
15 Koehl A, Hu H, Maeda S, Zhang Y, Qu Q, Paggi JM, et al. (2018) Structure of the µ-opioid receptor-Gi protein complex. Nature 558, 547-552.   DOI
16 Kim DW, Lee OJ, Kim SW, Ki CS, Chao JR, Yoo H, et al. (2015a) Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 70, 48-56.   DOI
17 Kim DW, Lee OJ, Kim SW, Ki CS, Chao JR, Yoo H, et al. (2015b) Novel fabrication of fluorescent silk utilized in biotechnological and medical applications. Biomaterials 70, 48-56.   DOI
18 Kurosaki S, Otsuka H, Kunitomo M, Koyama M, Pawankar R, Matumoto K (1999) Fibroin allergy IgE mediated hypersensitivity to silk suture materials. Nippon Ika Daigaku Zasshi 66, 41-44.   DOI
19 Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12, 405-413.   DOI
20 Kusurkar TS, Tandon I, Sethy NK, Bhargava K, Sarkar S, Singh SK, et al. (2013) Fluorescent silk cocoon creating fluorescent diatom using a "water glass-fluorophore ferry". Sci Rep 3, 3290.
21 Lee OJ, Sultan MT, Hong H, Lee YJ, Lee JS, Lee H, et al. (2020) Recent advances in fluorescent silk fibroin. Front Mater 7, 50.
22 Leem JW, Kim MS, Choi SH, Kim SR, Kim SW, Song YM, et al. (2020) Edible unclonable functions. Nat Commun 11, 328.
23 Mohan R, Venugopal S (2012) Computational structural and functional analysis of hypothetical proteins of Staphylococcus aureus. Bioinformation 8, 722-728.   DOI
24 Nath O, Singh A, Singh IK (2017) In-Silico drug discovery approach targeting receptor tyrosine kinase-like orphan receptor 1 for cancer treatment. Sci Rep 7, 1-10.   DOI
25 Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, Vo DVN, et al. (2019) Silk fibroin-based biomaterials for biomedical applications: a review. Polymers 11, 1933.   DOI
26 Pletnev S, Shcherbo D, Chudakov DM, Pletneva N, Merzilyak EM, Wlodawer A, et al. (2008) A crystallographic study of bright far-red fluorescent protein mkate reveals pH-induced cis-trans isomerization of the chromophore. J Biol Chem 283, 28980-28987.   DOI
27 Pollock E, Glosli J (1996) Comments on P3M, FMM, and the Ewald method for large periodic coulombic systems. Comput Phys Commun 95, 93-110.   DOI
28 Qiu J, Wang D, Zhang Y, Dong J, Wang J, Niu X (2013) Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin. PLoS One 8, e80197.
29 Rieloff E, Skepo M. (2021) Molecular dynamics simulations of phosphorylated intrinsically disordered proteins: a force field comparison. Int J Mol Sci 22, 10174.
30 Rahman MU, Rehman AU, Liu H, Chen HF (2020) Comparison and evaluation of force fields for intrinsically disordered proteins. J Chem Inf Model 60, 4912-4923.   DOI
31 Sahay A, Piprodhe A, Pise M (2020) In silico analysis and homology modeling of strictosidine synthase involved in alkaloid biosynthesis in catharanthus roseus. J Genet Eng Biotech 18, 1-6.   DOI
32 Schicht M, Rausch F, Finotto S, Mathews M, Mattil A, Schubert M, et al. (2014) SFTA3 a novel protein of the lung: three-dimensional structure, characterisation and immune activation. Eur Resp J 44, 447-456.   DOI
33 Schrodinger L (2022) PyMOL [Internet]. Available from: http://www.pymol.org/pymol [accessed on 24 October 2022].
34 Shao D, Zhang Q, Xu P, Jiang Z (2022) Effects of the temperature and salt concentration on the structural characteristics of the protein (PDB code 1BBL). Polymers 14, 2134.
35 Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, et al. (2022) LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun 271, 108171.
36 Wen DL, Sun DH, Huang P, Huang W, Su M, Wang Y, et al. (2021) Recent progress in silk fibroin-based flexible electronics. Microsyst Nanoeng 7, 35.
37 Yang Y, Shao Z, Chen X, Zhou P (2004) Optical spectroscopy to investigate the structure of regenerated Bombyx mori silk fibroin in solution. Biomacromolecules 5, 773-779.   DOI
38 Zuluaga-Velez A, Quintero-Martinez A, Orozco LM, Sepulveda-Arias JC (2021) Silk fibroin nanocomposites as tissue engineering scaffolds - a systematic review. Biomed Pharmacother 141, 111924.