• Title/Summary/Keyword: meat tenderness

Search Result 349, Processing Time 0.062 seconds

Meat Tenderness Characteristics of Ten Major Muscles from Hanwoo Steers according to Quality Grades of Carcasses

  • Lee, Kyu-Won;Hwang, Young-Hwa;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.593-598
    • /
    • 2017
  • The objective of this study was to determine the influence of quality grade (QG) on meat tenderness characteristics of ten major muscles from Hanwoo steers. A total of 25 Hanwoo carcasses ($5\;carcasses{\times}5\;QGs$) were selected. Intramuscular fat content, collagen content, sarcomere length, and Warner-Bratzler shear force (WBSF) of Longissimus thoracis (LT), Longissimus lumborum (LL), Psoas major (PM), Semisponals (SS), Triceps brachii (TB), Semimembranosus (SM), Gluteus medius (GM), Rectus Abdominis (RA), Superficialis flexor (SF), and Internal and external intercostal (IC) were determined. IC had the highest fat content, followed by LT, RA, LL, PM, GM, SS, SF, TB, and SM. High-fat muscles such as LT, LL, IC, RA, and PM had significantly (p<0.05) different fat contents among QGs. Collagen contents were significantly (p<0.05) different among QGs. With decreasing QG, increasing collagen content was found in muscles. There were significant (p<0.05) differences in sarcomere length among QGs of several muscles. However, no significant (p>0.05) difference in sarcomere length was found among QGs for LL, PM, or RA muscle. PM had the lowest WBSF, followed by LL, LT, RA, IC, GM, SM, SF, SS, and TB. WBSF of QG $1^{{+}{+}}$ was lower than that of QG 1 for SS, TB, and SM. All muscles of QG 1 showed lower WBSF than QG 3 except TB or IC. Results of this study suggested that differences in WBSF among these 10 muscles by QG were due to differences in collagen content and sarcomere length.

The influence of ultrasound and adenosine 5'-monophosphate marination on tenderness and structure of myofibrillar proteins of beef

  • Zou, Ye;Yang, Heng;Zhang, Muhan;Zhang, Xinxiao;Xu, Weimin;Wang, Daoying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1611-1620
    • /
    • 2019
  • Objective: The aim was to investigate the influence of ultrasound and adenosine 5'-monophosphate (AMP) marination (UAMP) on tenderness and structure of myofibrillar proteins of beef. Methods: Five groups, the untreated meat (Control), deionized water marination (DW), ultrasound followed by DW (UDW), AMP marination (AMP), and ultrasound followed by AMP (UAMP) were studied. Myofibrillar fragmentation, cooking loss, shear force, thermograms, histological observation of meats and myofibrillar proteins properties were investigated in these different treatments. Results: The results showed that UAMP significantly increased myofibrillar fragmentation index from 152 (Control), 231 (AMP), and 307 (UDW) to 355 (p<0.05), respectively. The lowest cooking loss, shear force and peak denaturation temperature were observed in UAMP. In histological observation, UDW and UAMP had more fragmented muscular bundles than the others. Furthermore, a drastic increase in ${\alpha}$-helix and decrease in ${\beta}$-sheet of myofibrillar proteins was observed in UAMP, implying the disaggregation of protein samples. The synchronous fluorescence spectra of myofibrillar proteins in UAMP suggested the combination of ultrasound and AMP could accelerate the unfolding molecular structure and destroying hydrophobic interactions. The results of circular dichroism and synchronous fluorescence spectra for myofibrillar proteins coincided with the microstructures of beef. Conclusion: The results indicate that ultrasound combined with AMP improved meat tenderness not only by disruption in muscle integrity, increasing water retention, but also altering their spatial structure of myofibrillar proteins.

Use of Chicken Meat and Processing Technologies

  • Ahn, D.U.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.1
    • /
    • pp.45-54
    • /
    • 2004
  • The consumption of poultry meat (chicken and turkey) grew the most during the past few decades due to several contributing factors such as low price, product research and development, favorable meat characteristics, responsive to consumer needs, vertical integration and industry consolidation, new processing equipments and technology, and aggressive marketing. The major processing technologies developed and used in chicken processing include forming/restructuring, tumbling, curing, smoking, massaging, injection, marination, emulsifying, breading, battering, shredding, dicing, and individual quick freezing. These processing technologies were applied to various parts of chicken including whole carcass. Product developments using breast, thigh, and mechanically separated chicken meat greatly increased the utilization of poultry meat. Chicken breast became the symbol of healthy food, which made chicken meat as the most frequent menu items in restaurants. However, the use of and product development for dark meat, which includes thigh, drum, and chicken wings were rather limited due to comparatively high fat content in dark meat. Majority of chicken are currently sold as further processed ready-to-cook or ready-to-eat forms. Major quality issues in chicken meat include pink color problems in uncured cooked breast, lipid oxidation and off-flavor, tenderness PSE breast, and food safety. Research and development to ensure the safety and quality of raw and cooked chicken meat using new processing technologies will be the major issues in the future as they are now. Especially, the application of irradiation in raw and cooked chicken meat products will be increased dramatically within next 5 years. The market share of ready-to-eat cooked meat products will be increased. More portion controlled finished products, dark meat products, and organic and ethnic products with various packaging approaches will also be introduced.

Influence of Milk Co-precipitates on the Quality of Restructured Buffalo Meat Blocks

  • Kumar, Sunil;Sharma, B.D.;Biswas, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.4
    • /
    • pp.564-568
    • /
    • 2004
  • Restructuring had made it possible to utilize lower value cuts and meat trimmings from spent animals by providing convenience in product preparation besides enhancing tenderness, palatability and value. Milk co-precipitates (MCP) have been reported to improve the nutritional and functional properties of certain meat products. This study was undertaken to evaluate the influence of incorporation of milk co-precipitates at four different levels viz. 0, 10, 15 and 20% on the quality of restructured buffalo meat blocks. Low-calcium milk co-precipitates were prepared from skim milk by heat and salt coagulation of milk proteins. Meat chunks were mixed with the curing ingredients and chilled water in a Hobart mixer for 5 minutes, followed by addition of milk co-precipitates along with condiments and spice mix and again mixed for 5 minutes. Treated chunks were stuffed in aluminium moulds and cooked in steam without pressure for 1.5 h. After cooking, treated meat blocks were compared for different physico-chemical and sensory attributes. Meat blocks incorporated with 10% MCP were significantly better (p<0.05) than those incorporated with 0, 15 and 20% MCP in cooking yield, percent shrinkage and moisture retention. Sensory scores were also marginally higher for meat blocks incorporated with 10% MCP than product incorporated with 15 and 20% MCP, besides being significantly higher than control. On the basis of above results 10% MCP was considered optimum for the preparation of restructured buffalo meat blocks. Instrumental texture profile analysis revealed that meat blocks incorporated with 10% MCP were significantly better (p<0.05) in hardness/ firmness than control although, no significant (p>0.05) differences were observed in cohesiveness, springiness, gumminess and chewiness of both type of samples.

Genome-wide association studies of meat quality traits in chickens: a review

  • Jean Pierre, Munyaneza;Thisarani Kalhari, Ediriweera;Minjun, Kim;Eunjin, Cho;Aera, Jang;Hyo Jun, Choo;Jun Heon, Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.407-420
    • /
    • 2022
  • Chicken dominates meat consumption because it is low in fat and high in protein and has less or no religious and cultural barriers. Recently, meat quality traits have become the focus of the poultry industry more than ever. Currently, poultry farming is focusing on meat quality to satisfy meat consumer preferences, which are mostly based on high-quality proteins and a low proportion of saturated fatty acids. Meat quality traits are polygenic traits controlled by many genes. Thus, it is difficult to improve these traits using the conventional selection method because of their low to moderate heritability. These traits include pH, colour, drop loss, tenderness, intramuscular fat (IMF), water-holding capacity, flavour, and many others. Genome-wide association studies (GWAS) are an efficient genomic tool that identifies the genomic regions and potential candidate genes related to meat quality traits. Due to their impact on the economy, meat quality traits are used as selection criteria in breeding programs. Various genes and markers related to meat quality traits in chickens have been identified. In chickens, GWAS have been successfully done for intramuscular fat (IMF) content, ultimate pH (pHu) and meat and skin colour. Moreover, GWAS have identified 7, 4, 4 and 6 potential candidate genes for IMF, pHu, meat colour and skin colour, respectively. Therefore, the current review summarizes the significant genes identified by genome-wide association studies for meat quality traits in chickens.

Is It Feasible Nutritionally to Improve Both Quality and Quantity of Meat Carcasses from Beef Steers?

  • Myung, Kyu Ho;Sun, Sang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1777-1782
    • /
    • 2007
  • Beef producers are trying to produce not only better quality but also greater quantity of beef in order to meet the preferences of some consumers at a lower cost. This can be accomplished if we understand the factors regulating lipid deposition in intramuscular adipose tissue and the tenderness of meat. Propylene glycol (PG) might be used as a precursor of intramuscular fat synthesis especially in the late period of fattening because adipose tissue in ruminants is thought to mature sequentially in abdominal, intermuscular, subcutaneous and intramuscular depots. The action of cholecalciferol supplementation has been verified in producing more tender meat through the enhancement of calpain activity over the postmortem ageing period. A synergistic effect can be expected if the dietary cation and anion difference (DCAD) technique is used in combination with dietary supplementation of cholecalciferol. In another approach, the optimization of hormonal implant use also may provide similarly marbled beef at a much lower cost.

Effects of Brine Immersion Ohmic Thawing Process on Physico-Chemical Properties of Frozen Pork

  • Hong, Geun-Pyo;Park, Sung-Hee;Kim, Jee-Yeon;Ko, Se-Hee;Lee, Sung;Min, Sang-Gi
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2006.05a
    • /
    • pp.214-218
    • /
    • 2006
  • In the current study, ohmic combined with brine immersion thawing increased thawing time than plate contact type ohmic thawing even at low voltage. Moreover, rapid thawing resulted in high WHC and improved meat tenderness. The result indicated if the problems in safety would be solved, brine immersion type ohmic thawing could reduce processing time in industrial application promising both improved meat qualities and successful application in meat industry, and further works were needed.

  • PDF

Differences in Health-related Fatty Acids, Intramuscular Fat and the Physico-chemical Quality in Mutton as Affected by Season, Place of Purchase and Meat Portion

  • Rani, Zikhona T.;Nantapo, Carlos W.T.;Hugo, Arnold;Muchenje, Voster
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1630-1637
    • /
    • 2014
  • The objective of the study was to determine the quality and fatty acid profiles of mutton cuts purchased from rural and urban localities in South Africa. Five hundred and ten samples were collected in four seasons from both rural and urban shops and butcheries. Samples were immediately transported to the laboratory in cooler boxes with ice where the following physico-chemical characteristics of mutton were determined; meat pH, color ($L^*$, $a^*$, and $b^*$), cooking losses and Warner Braztler shear force and replicates stored at $-20^{\circ}C$ pending fatty acid analysis. Meat $L^*$ values were lowest ($24.7{\pm}0.49$) in winter and highest ($32.2{\pm}0.49$) in spring. The loin and sirloin cuts recorded the highest intramuscular fat whilst rib and leg cuts recorded the lowest intramuscular fat. In conclusion intramuscular fat, fatty acid profiles and physico-chemical quality of mutton were significantly affected by season and meat portion and not necessarily by the locality and class of shop.

Changes in the quality of pork loin after short-term (ten-day) storage in a supercooling refrigerator

  • Park, Chun Ho;Park, Hye Sook;Yoon, Kyungah;Choe, Jeehwan
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.884-891
    • /
    • 2021
  • The study aimed to evaluate pork loin quality after short-term (ten-day) storage in a supercooling refrigerator. Pork loin samples were stored for 10 days in a traditional refrigerator (control) and a commercially available supercooling refrigerator (SC). Pork quality measurements included meat pH, meat color, water holding capacity (drip loss and cooking loss), tenderness (hardness), and a sensory evaluation. Temperature changes of 0.45 ± 0.2℃ and 0.02 ± 0.25℃ occurred in the control and the SC, respectively, during 10 days of storage. The temperature in the SC chamber did not remain below freezing point, failing to meet expectations. Regarding the pork quality measurements, only the drip losses in the control and the SC were significantly different (4.45% vs. 2.59%, p < 0.01) after 10 days of storage. There were no significant differences between the two types of refrigerator in terms of the other measurements. Additionally, the overall acceptability of the pork loin did not vary significantly between the control and the SC when the sensory evaluation was performed. Therefore, a commercial SC could prove beneficial in terms of water holding capacity during the short-term storage of meat. Further research should be performed to evaluate quality changes that occur during long-term storage of meat in SC s and evaluate a wide range of meat, such as beef and chicken.

Effects of Free-range Farming on Carcass and Meat Qualities of Black-feathered Taiwan Native Chicken

  • Cheng, F.Y.;Huang, C.W.;Wan, T.C.;Liu, Y.T.;Lin, L.C.;Lou Chyr, Chu-Ying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1201-1206
    • /
    • 2008
  • The effects of free-range farming, compared to a conventional production system, on carcass and meat qualities were studied using black-feathered Taiwan native chickens. Twenty 16-week old females were purchased separately from a free-range farm and a conventional production farm and used for this study. The results showed similarities in the live weight (roughly 2.1 kg), dressing percentage (69%) and meat percentage (19%) of deboned leg quarter. Significant differences (p<0.05) found for the free-range chickens included: a higher percentage of meat for the breast, an increased crude protein content and chewiness value for the breast, but decreased crude fat content and lower hardness and fracturablility values for the leg quarter. Significantly higher L* values were found for the breast and leg meat of conventionally produced chickens, whereas no significant differences were found for WHC and purge loss between the breast and the leg, and between the two production systems as well. Results of sensory evaluation showed a significant preference for leg over breast meat (p<0.05). The scores of all the attributes including aroma, flavor, firmness, tenderness, juiciness and overall acceptability of leg meat from free-range chickens were slightly higher than for conventional chickens, while the reverse was true for breast meat, though no significant difference could be found. Free-range Taiwan native chicken appeared to yield the best of the results, with flavorful yet tender leg meat for higher sensory satisfaction, and high-protein but low-fat breast meat for healthier diet choice.