DOI QR코드

DOI QR Code

Genome-wide association studies of meat quality traits in chickens: a review

  • Jean Pierre, Munyaneza (Division of Animal and Dairy Science, Chungnam National University) ;
  • Thisarani Kalhari, Ediriweera (Department of Bio-AI Convergence, Chungnam National University) ;
  • Minjun, Kim (Division of Animal and Dairy Science, Chungnam National University) ;
  • Eunjin, Cho (Department of Bio-AI Convergence, Chungnam National University) ;
  • Aera, Jang (Department of Animal Products and Food Science, Kangwon National University) ;
  • Hyo Jun, Choo (Poultry Research Institute, National Institute of Animal Science) ;
  • Jun Heon, Lee (Division of Animal and Dairy Science, Chungnam National University)
  • Received : 2022.03.11
  • Accepted : 2022.05.30
  • Published : 2022.09.01

Abstract

Chicken dominates meat consumption because it is low in fat and high in protein and has less or no religious and cultural barriers. Recently, meat quality traits have become the focus of the poultry industry more than ever. Currently, poultry farming is focusing on meat quality to satisfy meat consumer preferences, which are mostly based on high-quality proteins and a low proportion of saturated fatty acids. Meat quality traits are polygenic traits controlled by many genes. Thus, it is difficult to improve these traits using the conventional selection method because of their low to moderate heritability. These traits include pH, colour, drop loss, tenderness, intramuscular fat (IMF), water-holding capacity, flavour, and many others. Genome-wide association studies (GWAS) are an efficient genomic tool that identifies the genomic regions and potential candidate genes related to meat quality traits. Due to their impact on the economy, meat quality traits are used as selection criteria in breeding programs. Various genes and markers related to meat quality traits in chickens have been identified. In chickens, GWAS have been successfully done for intramuscular fat (IMF) content, ultimate pH (pHu) and meat and skin colour. Moreover, GWAS have identified 7, 4, 4 and 6 potential candidate genes for IMF, pHu, meat colour and skin colour, respectively. Therefore, the current review summarizes the significant genes identified by genome-wide association studies for meat quality traits in chickens.

Keywords

Acknowledgement

This work was supported by the grant number PJ0162052022 of the Rural Development Administration of Korea.

References

  1. Anggraeni A, Gunawan A, Rukmiasih, Suryati T, Sumantri C. 2017. Identification of polymorphism and association analyses of FMO3 gene related with carcass and meat quality in Cihateup duck. Animal Production 119:151-159. https://dx.doi.org/10.20884/1.jap.2017.19.3.623. 
  2. Berghof TVL, Visker MHPW, Arts JAJ, Parmentier HK, Van der Poel JJ, Vereijken ALJ. 2018. Genomic region containing toll-like receptor genes has a major impact on total IGM antibodies including KLH-binding IgM natural antibodies in chickens. Frontiers in Immunology 8:1879. https://doi.org/10.3389/fimmu.2017.01879. 
  3. Berri C, Debut M, Sante-Lhoutellier V, Arnould C, Boutten B, Sellier N, Baeza E, Jehl N, Jego Y, Duclos MJ, et al. 2005. Variations in chicken breast meat quality: Implications of struggle and muscle glycogen content at death. British Poultry Science 46:572-579. https://doi.org/10.1080/00071660500303099. 
  4. Boukha A, Bonfatti V, Cecchinato A, Albera A, Galo L, Camier P, Britantte G. 2011. Genetic parameters of carcass and meat quality traits of double muscled Piedmontese cattle. Meat Science 89:84-90. https://doi.org/10.1016/j.meatsci.2011.03.024. 
  5. Broix L, Asselin L, Silva CG, Ivanova EL, Tilly P, Gilet JG, Lebrun N, Jagline H, Muraca G, Saillour Y, et al. 2018. Ciliogenesis and cell cycle alterations contribute to KIF2A-related malformations of cortical development. Human Molecular Genetics 27:224-238. https://doi.org/10.1093/hmg/ddx384. 
  6. Chandra R, Liddle RA. 2007. Cholecystokinin. Current Opinion in Endocrinology, Diabetes and Obesity 14:63-67. https://doi.org/10.1097/MED.0b013e3280122850. 
  7. Chen GH, Li HF, Wu XS, Li BC, Xie KZ, Dai GJ, Chen KW, Zhang XY, Wang KH. 2002. Factors affecting the inosine monophosphate content of muscles in Taihe silkies chickens. Asian Australasian Journal of Animal Sciences 15:1359-1363. https://doi.org/10.5713/ajas.2002.1358. 
  8. Chen JL, Zhao GP, Zheng MQ, Wen J, Yang N. 2008. Estimation of genetic parameters for contents of intramuscular fat and inosine-5'-monophosphate and carcass traits in Chinese Beijing-You chickens. Poultry Science 87:1098-1104. https://doi.org/10.3382/ps.2007-00504. 
  9. Chumngoen W, Tan FJ. 2015. Relationships between descriptive sensory attributes and physicochemical analysis of broiler and Taiwan native chicken breast meat. Asian Australasian Journal of Animal Sciences 28:1028-1037. https://doi.org/10.5713/ajas.14.0275. 
  10. Chung HY, Lee KT, Jang GW, Choi JG, Hong JG, Kim TH. 2015. A genome-wide analysis of the ultimate pH in swine. Genetics and Molecular Research 14:15668-15682. http://dx.doi.org/10.4238/2015.December.1.19. 
  11. Davoodi P, Ehsani A. 2020. Characteristics of carcass traits and meat quality of broiler chickens reared under conventional and free-range systems. Journal of World Poultry Research 10:624-630. https://dx.doi.org/10.36380/jwpr.2020.71. 
  12. Do DN, Strathe AB, Ostersen T, Pant SD, Kadarmideen HN. 2014. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Frontiers in Genetics 5:307. https://doi.org/10.3389/fgene.2014.00307. 
  13. Fife MS, Howell JS, Salmon N, Hocking PM, Van Diemen PM, Jones MA, Stevens MP, Kaiser P. 2010. Genome-wide SNP analysis identifies major QTL for Salmonella colonization in the chicken. Animal Genetics 42:134-140. https://doi.org/10.1111/j.1365-2052.2010.02090.x. 
  14. Fletcher DL, Qiao M, Smith DP. 2000. The relationship of raw broiler breast meat color and pH to cooked meat color and pH. Poultry Science 79:784-788. https://doi.org/10.1093/ps/79.5.784. 
  15. Fletcher DL. 2007. Poultry meat quality. World's Poultry Science Journal 58:131-145. https://doi.org/10.1079/wps20020013. 
  16. Furqon A, Gunawan A, Ulupi N, Suryati T, Sumantri C. 2017. Expression and association of SCD gene polymorphisms and fatty acid acid compositions in chicken cross. Media Peternakan 40:151-157. https://doi.org/10.5398/medpet.2017.40.3.151. 
  17. Gao G, Gao N, Li S, Kuang W, Zhu L, Jiang W, Yu W, Guo J, Li Z, Yang C, et al. 2021. Genome-wide association study of meat quality traits in a three-way crossbred commercial pig population. Frontiers in Genetics 12:614087. https://doi.org/10.3389/fgene.2021.614087. 
  18. Gebreselassie G, Berihulay H, Jiang L, Ma Y. 2019. Review on genomic regions and candidate genes associated with economically important production and reproduction traits in sheep (Ovies aries). Animals 10:33. https://doi.org/10.3390/ani10010033. 
  19. Geng X, Liu S, Yuan Z, Jiang Y, Zhi D, Liu Z. 2017. A genome-wide association study reveals that genes with functions for bone development are associated with body conformation in catfish. Marine Biotechnology 19:570-578. https://doi.org/10.1007/s10126-017-9775-3. 
  20. Goddard ME, Hayes BJ. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics 10:381-391. https://doi.org/10.1038/nrg2575. 
  21. Gu XR, Feng CG, Ma L, Song C, Wang YQ, Da Y, Li HF, Chen KW, Ye SH, Ge CR. 2011. Genome-wide association study of body weight in chicken F2 resource population. PLoS ONE 6:e21872. https://doi.org/10.1371/journal.pone.0021872. 
  22. Gunawan A, Anggraeni A, Listyarini K, Sumantri C. 2018. Potential functional variants for fatness, carcass and meat quality traits in exon 3 of fat mass and obesity-associated gene in Indonesian ducks. International Journal Poultry Science 17:443-451. https://doi.org/10.3923/ijps.2018.443.451. 
  23. Habimana R, Ngeno K, Okeno TO, Hirwa CD, Keambou TC, Yao NK. 2021. Genome-wide association study of growth performance and immune response to newcastle disease virus of indigenous chicken in Rwanda. Frontiers in Genetics 12:723980. https://doi.org/10.3389/fgene.2021.723980. 
  24. Hancarova M,\Malikova M,\Kotrova M,\Drabova J,\Trkova M, Sedlacek Z. 2018. Association of 17q24.2-q24.3 deletions with recognizable phenotype and short telomeres. American Journal of Medical Genetics A 176:1438-1442. https://doi.org/10.1002/ajmg.a.38711. 
  25. Haraf G, Ksiazkiewicz J, Woloszyn J, Okruszek A. 2009. Characteristic of meat colour of different duck populations. Archives Animal Breeding 52:527-537. https://doi.org/10.5194/aab-52-527-2009. 
  26. Hidayati, Sumantri C, Noor RR, Priyanto R, Rahayu S. 2015. Single nucleotide polymorphisms of lipoprotein lipase gene and its association with marbling quality in local sheep. Journal of the Indonesian Tropical Animal Agriculture 40:1-10. https://doi.org/10.14710/jitaa.40.1.1-10. 
  27. Hirschhorn JN, Daly MJ. 2005. Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics 6:95-108. https://doi.org/10.1038/nrg1521. 
  28. Hocquette JF, Gondret F, Baeza E, Medale F, Jurie C, Pethick DW. 2010. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 4:303-319. https://doi.org/10.1017/S1751731109991091. 
  29. Hu J, Yu P, Ding X, Xu M, Guo B, Xu Y. 2015. Genetic polymorphisms of the AMPD1 gene and their correlations with IMP contents in Fast Partridge and Lingshan chickens. Gene 574:204-209. https://doi.org/10.1016/j.gene.2015.08.008. 
  30. Huang L, Wang HY, Li JD, Wang JH, Zhou Y, Luo RZ, Yun JP, Zhang Y, Jia WH, Zheng M. 2013. KPNA2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-Myc and downregulation of FOXO3a. Cell Death Disease 4:e745. https://doi.org/10.1038/cddis.2013.256. 
  31. Ibiyemi O, Maguire A, Zohoori FV, Kometa S, Valentine RA. 2020. Single nucleotide polymorphisms in COL1A2 gene and dental fluorosis among 4 and 8-year-old Nigerian children. Journal of Dentistry 2:1-6. http://dx.doi.org/10.31487/j.JDOA.2020.02.04. 
  32. Ismail I, Joo ST. 2017. Poultry meat quality in relation to muscle growth and muscle fiber characteristics. Korean Journal for Food Science of Animal Resources 37:873-883. https://doi.org./10.5851/kosfa.2017.37.6.87. 
  33. Jayasena DD, Jung S, Park HB, Lee JH, Nam KC, Lee KH, Jo C. 2015. Taste-active compound levels in Korean native chicken meat: The effects of bird age and the cooking process. Poultry Science 94:1964-1972. https://doi.org/10.3382/ps/pev154. 
  34. Ji J, Luo CL, Zou X, Lv XH, Xu YB, Shu DM, Qu H. 2019. Association of host genetics with intestinal microbial relevant to body weight in a chicken F2 resource population. Poultry Science 98:4084-4093. https://doi.org/10.3382/ps/pez199. 
  35. Jia X, Nie Q, Lamont SJ, Zhang X. 2012. Variation in sequence and expression of the avian FTO, and association with glucose metabolism, body weight, fatness and body composition in chickens. International Journal of Obesity (Lond) 36:1054-1061. https://doi.org/10.1038/ijo.2011.221. 
  36. Jin S, Jayasena DD, Jo C, Lee JH. 2017. The breeding history and commercial development of the Korean native chicken. World's Poultry Science Journal 73:164-173. https://doi.org/10.1017/S004393391600088X. 
  37. Jin S, Lee SH, Lee DH, Manjula P, Lee SH, Lee JH. 2020. Genetic association of DEGS1, ELOVL6, FABP3, FABP4, FASN and SCD genes with fatty acid composition in breast and thigh muscles of Korean native chicken. Animal Genetics 51:344-345. https://doi.org/10.1111/age.12908. 
  38. Jin S, Park HB, Seo D, Choi NR, Manjula P, Cahyadi M, Jung S, Jo C, Lee JH. 2018. Identification of quantitative trait loci for the fatty acid composition in Korean native chicken. Asian Australasian Journal of Animal Sciences 31:1134-1140. https://doi.org/10.5713/ajas.17.0781. 
  39. Joo ST, Kim GD, Hwang YH, Ryu YC. 2013. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science 95:828-836. https://doi.org/10.1016/j.meatsci.2013.04.044. 
  40. Jung S, Bae YS, Kim HJ, Jayasena DD, Lee JH, Park HB, Heo KN, Jo C. 2013. Carnosine, anserine, creatine, and inosine 5'-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poultry Science 92:3275-3282. https://doi.org/10.3382/ps.2013-03441. 
  41. Jung Y, Jeon HJ, Jung S, Choe JH, Lee JH, Heo KN, Kang BS, Jo C. 2011. Comparison of quality traits of thigh meat from Korean native chicken and broilers. Korean Journal for Food Science of Animal Resources 31:684-692. https://doi.org/10.5851/kosfa.2011.31.5.684. 
  42. Kralik G, Kralik Z, Grcevic M, Hanzek D. 2017. Quality of chicken meat. Accessed in https://doi.org/10.5772/intechopen.72865 on 4 February 2022. 
  43. Li X, Goobie GG, Zhang Y. 2021. Toll-interacting protein impacts on inflammation, autophagy, and vacuole trafficking in human disease. Journal of Molecular Medicine 99:21-31. https://doi.org/10.1007/s00109-020-01999-4. 
  44. Liu R, Sun Y, Zhao G, Wang F, Wu D, Zheng M, Chen J, Zhang L, Hu Y, Wen J. 2013. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS ONE 8:e61172. https://doi.org/10.1371/journal.pone.00661172. 
  45. Liu WB, Li DF, Liu JF, Chen SR, Qu LJ, Zheng JX, Xu GY, Yang N. 2011. A genomewide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS ONE 6:e28600. https://doi.org/10.1371/JOURNAL.PONE.0028600. 
  46. Liu XD, Jayasena DD, Jung Y, Jung S, Kang BS, Heo KN, Lee JH, Jo C. 2012. Differential proteome analysis of breast and thigh muscles between Korean native chickens and commercial broilers. Asian Australasian Journal of Animal Sciences 25:895-902. https://doi.org/10.5713/ajas.2011.11374. 
  47. Liu Y, Chen X, Xu Q, Gao X, Tam POS, Zhao K, Zhang X, Chen LJ, Jia W, Zhao Q, et al. 2015. SPP2 mutations cause autosomal dominant retinitis pigmentosa. Scientific Reports 5:14867. https://doi.org/10.1038/srep14867. 
  48. Ma T, Xu L, Wang H, Chen J, Liu L, Chang G, Chen G. 2015. Mining the key regulatory genes of chicken inosine 5-monophosphate metabolism based on time series microarray data. Journal of Animal Science and Biotechnology 6:21. https://doi.org/10.1186/s40104-015-0022-3. 
  49. Maharani D, Jung Y, Jo C, Jung WY, Nam KC, Seo KS, Lee SH, Lee JH. 2012. Evaluation of three candidate genes affecting fatty acid composition in pigs. Korean Journal for Food Science of Ani Resources 32:6-12. http://doi.org/10.5851/kosfa.2012.32.1.6. 
  50. Maharani D, Seo DW, Choi NR, Jin S, Cahyadi M, Jo C, Lee JH. 2013. Association of FASN and SCD genes with fatty acid composition in broilers. Korean Journal of Agriculture Science 40:215-220. http://dx.doi.org/10.7744/cnujas.2013.40.3.215. 
  51. Manning M, Jiang Y, Wang R, Liu L, Rode S, Bonahoom M, Kim S, Yang ZQ. 2020. Pan-cancer analysis of RNA methyltransferases identifies FTSJ3 as a potential regulator of breast cancer progression. RNA Biology 17:474-486. https://doi.org/10.1080/15476286.2019.1708549. 
  52. Marangoni F, Corsello G, Cricelli C, Ferrara N, Ghiselli A, Lucchin L, Poli A. 2015. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food & Nutrition Research 59:27606. http://dx.doi.org/10.3402/fnr.v59.27606. 
  53. Milicevic D, Vranic D, Masic Z, Parunovic N, Trbovic D, Nedeljkovic-Trailovic J, Petrovic Z. 2014. The role of total fats, saturated/unsaturated fatty acids and cholesterol content in chicken meat as cardiovascular risk factors. Lipids in Health and Disease 13:42. http://www.lipidworld.com/content/13/1/42. 
  54. Morenga LT, Montez JM. 2017. Health effects of saturated and trans-fatty acid intake in children and adolescents: Systematic review and meta-analysis. PLoS ONE\12:e0186672. https://doi.org/10.1371/journal.pone.0186672. 
  55. Munyaneza JP, Rukundo JD, Niyonsaba A. 2021. Review on challenges and opportunities of poultry production systems, genetic resources, and improvement in Rwanda. Journal of Animal Breeding and Genomics 5:149-156. https://doi.org/10.12972/jabng.20210014. 
  56. Nurgulsim K, Raza SHA, Khan R, Shah MA, Jahejo AR, Batool U, Hongbao W, Zhigerbayevich KN, Schreurs N, Zan L. 2021. Identification of genetic variants the CCKAR gene and based on body measurement and carcass quality characteristics in Qinchuan beef cattle (Bos taurus). Electronic Journal of Biotechnology 51:1-7.\https://doi.org/10.1016/j.ejbt.2021.02.001.OECD/FAO (Organization for Economic Cooperation Development/Food and Agricultural Organization). 2021. OECD-FAO agricultural outlook 2021-2030. OECD Publishing, Paris, France. https://doi.org/10.1787/19428846-en. 
  57. OECD/FAO (Organization for Economic Cooperation Development/Food and Agricultural Organization). 2022. OECD-FAO agricultural-outlook. Accessed in https://www.compareyourcountry.org/agricultural-outlook/eng on 27 January 2022. 
  58. Ono T, Kouguchi T, Ishikawa A, Nagano AJ, Takenouchi A, Igawa T, Tsudzuki M. 2019. Quantitative trait loci mapping for the shear force value in breast muscle of F2 chickens. Poultry Science 98:1096-1101. http://dx.doi.org/10.3382/ps/pey493. 
  59. Pampouille E, Berri C, Boitard S, Hennequet-Antier C, Beauclercq SA, Godet E, Praud C, Jego Y, Le Bihan-Duval E. 2018. Mapping QTL for white striping in relation to breast muscle yield and meat quality traits in broiler chickens. BMC Genomics 19:202. https://doi.org/10.1186/s12864-018-4598-9. 
  60. Placzek WJ, Almeida MS, Wuthrich K. 2007. NMR structure and functional characterization of a human cancer-related nucleoside triphosphatase. Journal of Molecular Biology 367:788-801. https://doi.org/10.1016/j.jmb.2007.01.001. 
  61. Qiao M, Fletcher DL, Smith DP, Northcutt JK. 2001. The effect of broiler meat colour on pH, moisture, water-holding capacity, and emulsification capacity. Poultry Science 80:676-680. https://doi.org/10.10993/ps80.5.678. 
  62. Qin YH, Wang W, Yao J, Wang J, Guo XM, Lai SJ. 2011. Correlation analysis between mRNA expression of AMPD1 gene and IMP contents in rabbits. Journal of Animal and Veterinary Advances 10:2567-2570. https://doi.org/10.3923/javaa.2011.2567.2570. 
  63. Raza SHA, Khan S, Amjadi M, Abdelnour SA, Ohran H, Alanazi KM, Abd El-Hack ME, Taha AE, Khan R, Gong C, et al. 2020. Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Archives of Biochemistry and Biophysics 694:108543. https://doi.org/10.1016/j.abb.2020.108543. 
  64. Rizkalla SW, Prifti E, Cotillard A, Pelloux V, Rouault C, Allouche R, Laromiguiere M, Kong L, Darakhshan F, Massiera F, et al. 2012. Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: A randomized controlled trial. American Journal of Clinical Nutrition 95:49-63. https://doi.org/10.3945/ajcn.111.017277. 
  65. Sellers TA, Huang Y, Cunningham J, Goode EL, Sutphen R, Vierkant RA, Kelemen LE, Fredericksen ZS, Liebow M, Pankratz VS, et al. 2008. Association of single nucleotide polymorphisms in glycosylation genes with risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers & Prevention 17:397-404. https://doi.org/10.1158/1055-9965.EPI-07-0565. 
  66. Sharmaa A, Lee JS, Dang CG, Sudrajad P, Kim HC, Yeon SH. 2015. Stories and challenges of genome-wide association studies in livestock-a review. Asian Australasian Journal of Anim Sciences 28:1371-1379. https://doi.org/10.5713/ajas.14.0715. 
  67. Shu JT, Chen GH, Hana W, Zhang XY. 2010. Analysis of the genetic effects of three single nucleotide polymorphisms on inosine monophosphate content in Chinese Baier chicken. Avian Biology Research 3:75-80. https://doi.org/10.3184/175815510X12742871317581. 
  68. Snit M, Misiolek M, Scierski W, Koniewska A, Stryjewska-Makuch G, Okla S, Grzeszczak W. 2021. DIAPH2, PTPRD and HIC1 gene polymorphisms and laryngeal cancer risk. International Journal of Environmental Research and Public Health 18:7486. https://doi.org/10.3390/ijerph18147486. 
  69. Soller M, Weigend S, Romanov MN, Dekkers JCM, Lamont SJ. 2006. Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poultry Science 85:2061-2078. https://doi.org/10.1093/ps/85.12.2061. 
  70. Sun Y, Zhao G, Liu R, Zheng M, Hu Y, Wu D, Zhang L, Li P, Wen J. 2013. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics 14:458. https://doi.org/10.1186/1471-2164-14-458. 
  71. Tan Y, Hou M, Ma S, Liu P, Xia S, Wang Y, Chen L, Chen Z. 2018. Chinese cases of early infantile epileptic encephalopathy: A novel mutation in the PCDH19 gene was proved in a mosaic male-case report. BMC Medical Genetics 19:92. https://doi.org/10.1186/s12881-018-0621-x. 
  72. Tougan UP, Youssao IAK, Yayi EL, Kpodekon MT, Heuskin S, Beckers Y, Mensah GA, Koutinhouin BG, Lognay G, Thewis A. 2018. Fatty acids composition of meat of five native chicken (Gallus gallus) ecotypes of Benin reared under organic or conventional system. Journal of Experimental Food Chemistry 4:2. https://doi.org/10.4172/2472-0542.1000137. 
  73. Trembecka L, Hascik P, cubon J, Bobko M, Pavelkova A. 2016. Fatty acids profile of breast and thigh muscles of broiler chickens fed diets with propolis and probiotics. Journal of Central European Agriculture 17:1179-1193. https://doi.org/10.5513/JCEA01/17.4.1828. 
  74. Uemoto Y, Ohtake T, Sasago N, Takeda M, Abe T, Sakuma H, Kojima T, Sasaki S. 2017. Effect of two non-synonymous ecto-5'-nucleotidase variants on the genetic architecture of inosine 5'-monophosphate (IMP) and its degradation products in Japanese Black beef. BMC Genomics 18:874. https://doi.org/10.1186/s12864-017-4275-4. 
  75. Uusitalo A, Tenhunen K, Tenhunen J, Matikainen S, Peltonen L, Jalanko A. 1997. Expression and regulation of the human and mouse aspartlyglucosaminidase gene. Journal of Biological Chemistry 272:9524-9530. https://doi.org/10.1074/jbc.272.14.9524. 
  76. Van der Steen HAM, Prall GFW, Plastow GS. 2005. Application of genomics to the pork industry. Journal of Animal Science Volume 83:E1-E8. https://doi.org/10.2527/2005.8313_supplE1x. 
  77. Van Son M, Enger EG, Grove H, Ros-Freixedes R, Kent MP, Lien S, Grindflek E. 2017. Genome-wide association study confirms major QTL for backfat fatty acid composition on SSC14 in Duroc pigs. BMC Genomics 18:369. 
  78. Warner RD, Greenwood PL, Pethick DW, Ferguson DM. 2010. Genetic and environmental effects on meat quality. Meat Science 86:171-183. https://doi.10.1016/j.meatsc.2010.04.042. 
  79. Wideman N, O'Bryan CA, Crandall PG. 2019. Factors affecting poultry meat colour and consumer preferences-a review. World's Poultry Science Journal 72:353-366. https://doi.org/10.1017/S0043933916000015. 
  80. Xie L, Luo CL, Zhang CG, Zhang R, Tang J, Nie QH, Ma L, Hu XX, Li N, Da Y. 2012. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits. PLoS ONE 7:e30910. https://doi.org/10.1371/journal.pone.0030910. 
  81. Yang X, Chen J, Zheng B, Liu X, Cao Z, Wang X. 2020. PCDH19-related epilepsy in early onset of Chinese male patient: Case report and literature review. Frontiers in Neurology 11:311. https://doi.org/10.3389/fneur.2020.00311. 
  82. Zhang T, Lu H, Wang L, Yin M, Yang L. 2018. Specific expression pattern of IMP metabolism related-genes in chicken muscle between cage and free range conditions. PLoS ONE 13:e0201736. https://doi.org/10.1371/journal.pone.0201736. 
  83. Zhao GP, Chen JL, Zheng MQ, Wen J, Zhang Y. 2007. Correlated responses to selection for increased intramuscular fat in a Chinese quality chicken line. Poultry Science 86:2309-2314. https://doi.org/10.3382/ps.2007-00013. 
  84. Zhao L, Li Y, Yu J, Liao H, Wang S, Lv J, Liang J, Huang X, Bao Z. 2017. A genome-wide association study identifies the genomic region associated with shell color in Yesso scallop, Patinopecten yessoensis. Marine Biotechnology 19:301-309. https://doi.org/10.1007/s10126-017-9751-y.