• Title/Summary/Keyword: measuring atmosphere

Search Result 152, Processing Time 0.02 seconds

Ionic Conductivity of Solid Solution Ceramics in The System of Stabilized ZrO2 Prepared by Self-Propagating High-Temperature Synthesis

  • Soh, Deawha;Korobova, N.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.349-355
    • /
    • 2002
  • The ionic conductivity of cubic solid solutions in the systems of CaO-$ZrO_2$, $Y_2O_3-ZrO_2$ prepared by SHS was examined. The higher conductivity appears to be related to a lower activation energy rather than to the number of oxygen vacancies dictated by composition. Conductivity-temperature data was obtained at 1000 $^{\circ}C$ in atmosphere of low oxygen partial pressure (~$10^{-40}$ atm) for $Y_2O_3-ZrO_2$ cubic solid solutions. The data indicated that these materials could be reduced, and the decree of reduction would be related with the measuring electric field.

Efficiency of Superconducting Gravimeter Observations and Future Prospects

  • Neumeyer Juergen
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.15-29
    • /
    • 2005
  • Superconducting Gravimeters (SG) are the most sensitive instruments for measuring temporal gravity variations. The gravimeter is an integrating sensor therefore the gravity variations caused by different sources must be separated for studying a special effect by applying different models and data analysis methods. The present reduction methods for gravity variations induced by atmosphere and hydrosphere including the ocean and the detection and determination of the most surface gravity effects are shown. Some examples demonstrate the combination of ground (SG) and space techniques especially the combination of SG with GRACE satellite derived temporal gravity variations. Resulting from the performance of the SG and the applied data analysis methods some proposals are made for future SG applications.

MAGNETISM OF NANOPHASE IRON PARTICLES LASER EVAPORATED IN A CONTROLLED OXYGEN ATMOSPHERE

  • Turkki, T.;Jonsson, B.J.;Strom, V.;Medelius, H.;El-Shall, M.S.;Rao, K.V.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.745-748
    • /
    • 1995
  • Magnetic nanoparticles of iron and iron oxide have been prepared in a modified upward thermal diffusion cloud chamber using pulsed laser evaporation. SEM/TEM studies of these particles reveal a size distribution with a mean diameter of about $60\;{\AA}$. FTIR spectrum measurements are used to investigate the difference in oxidation level between nanoparticles prepared at different partial oxygen pressures. The complex magnetic behaviour of these particles was studied using DC- and AC-susceptibility measurements. All samples exhibit superparamagnetism with blocking temperatures ranging from 50 K to above room temperature. The coercivity fields as well as the dependence of the blocking temperature on measuring frequency have been studied. magnetic anisotropy constants are found to be one order of magnitude higher than is known for the bulk values. The mean particle size estimated from the magnetic data is found to be in perfect agreement with the TEM observations.

  • PDF

Measurement of Radiative Loss from the Multi-layer Spectral Inversion of the Ha line and Ca II 8542 line taken by the FISS

  • Kang, Soo Sang;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.77.3-78
    • /
    • 2021
  • Measuring radiative loss from the solar chromospheric lines like Ha line, Ca II 8542 line helps to infer the exact amount of non-thermal heating in the solar atmosphere. By courtesy of the multi-layer spectral inversion, it is able to determine the radiative loss in the upper and lower chromosphere. Consequently, we found that the radiative loss is around 10 kW/m2, which is consistent with previous studies. Comparing the radiative loss at the upper and lower chromosphere, the loss at the lower chromosphere is larger than that of upper chromosphere and tends to spread all over the field of view while the loss in the upper chromosphere tends to be localized. We hope to find a hint for specific non-thermal heating process to explain the chromospheric radiative loss.

  • PDF

The Power Loss Characteristics of Mn-Zn Ferrites at MHz Region with Sintering Condition (소성조건에 따른 MHz 대역의 Mn-Zn ferrite 전력손실 특성)

  • Suh J.J.;Song B.M
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.26-31
    • /
    • 2003
  • The power loss characteristics of Mn-Zn ferrite were observed with the sintering temperature. In case of $1150 ^{\circ}C$ sintering, the core loss increased with measuring temperature, and does not have minimum value at the point where the magnetocrystalline anisotropy be 'zero'. This reason mainly due to the change of core loss mechanism with grain size which affects residual loss. The grain size and sintered density slightly increased with equilibrium oxygen partial pressure at$ 1150 ^{\circ}C$ sintering. The resistivity and initial permeability showed no significance with atmosphere, these results due to complex effect of $Fe^{2+}$ concentration and microstructure change. The core loss at $100^{\circ}C$ decreased as the equilibrium oxygen partial pressure increased.e increased.

A Study on the Corrosion Characteristics Evaluation for Reactor Material of Waste Water Treatment (폐수처리 반응기용 재질의 부식특성 평가에 대한 연구)

  • Kim, Ki-Tae;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.2
    • /
    • pp.60-65
    • /
    • 2008
  • As the operating conditions in a supercritical oxidation reactor are set in high temperature with high pressure causing a reactor suffering from the harsh circumstances. It means the reactor adopts itself with Fe-Cr alloy in acidic atmosphere with low pH value and Ni alloy in basic atmosphere with high pH value due to its superior corrosion resistance. The study, whose target waster water is pertinent to the latter part, has selected Ni alloy such as ostenite type stainless steel 304 and 316, superstainless steel AL6XN, Inconel 625, MAT 21, and titanium Gr. 5 in order to measure corrosion resistance against those samples under the same conditions of temperature and pressure applied for a supercritical oxidation reactor. The result shows the identifiable difference in corrosion resistance by observing the surface states through a scanning probe microscope as well as measuring the weight loss through making the samples above deposited in wastewater for two-week and four-week stay. The purpose of this corrosion experiment is to identify the most corrosion-resistant material among sample species pre-selected according to pH concentration of wastewater in pursue of applying for a reactor exposed to the extreme corrosion environment. It is because such a reactor made of a verified material enables to safeguard a stable operation under the supercritical wastewater processing facility.

  • PDF

Effects of Atmospheric Composition Substitution and Pressure on Soot Formation of Jet-A1 Droplet Flames (대기조성 치환 및 압력이 Jet A1 액적화염의 매연입자 생성에 미치는 영향에 관한 연구)

  • Nam, Won-Sik;Ryu, Myung-Ho;Lee, Jong Won;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.13-18
    • /
    • 2019
  • In this study, the soot formation characteristics of Jet-A1 liquid fuel droplet flames were investigated by measuring the soot concentration under atmospheric conditions similar to the working environment of the Korea Space Launch Vehicle (KSLV) To obtain the desired atmospheric conditions, the oxygen concentration in the combustion chamber was maintained at 30% and the pressure was varied between 0.1 and 0.06 MPa. The full-field light extinction technique was used to measure the concentration of soot particles generated by applying the identical to 2-mm-diameter Jet-A1 fuel droplets. The soot concentration of the Jet-A1 droplet flames was the highest in the nitrogen-substituted atmosphere and the lowest in the carbon dioxide-substituted atmosphere, despite the pressure. the pressure was decreased the measured soot concentrations reduced as a function of Pn.

Synthesis of Spinel Pigment on ZnO-Fe2O3 System (ZnO-Fe2O3계 Spinel안료에 대한 연구)

  • 이진성;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.187-194
    • /
    • 1989
  • Synthesis of spinel pigment on ZnO-Fe2O3 system. The object of this research is the synthesis of new spinel pigments on the basic of ZnO-Fe2O3 system which was substituted by ZnO-Fe2O3 by MgO-Al2O3. This research was progressed by measuring the X-ray diffraction and the reflectances of the substitued ZnO-Fe2O3 group. Which was obtained by sintering at the temperature of 1,00$0^{\circ}C$, 1,10$0^{\circ}C$, 1,20$0^{\circ}C$ and 1,25$0^{\circ}C$ and them by regrinding. In order to coloring test, here basic compositions of Barium glaze, Zinc glaze, Lime glaze, Lead glaze and Talc glaze used in this experiment are obtained from the ceramic work. Adding synthetic stains in these basic glazes with 3%, mixing and glazing on the specimen. The specimens was fired at 1,28$0^{\circ}C$ in reducing and oxidizing atmosphere in the gas kiln. The results of the research as follow. 1. Many kinds of spinel pigment was produced on ZnO-Fe2O3 system that is to say, not always only spinel. 2. Spinel peak was observed strongly on the ZnO-Fe2O3 system withsubstituting by MgO-Fe2O3 and MgO-Al2O3 group(the ratio of MgO, Al2O3 being increased, observed more strongly). 3. The most effective temperature ranges was 1,20$0^{\circ}C$~1,25$0^{\circ}C$. 4. The color of spinel pigments on this system was observed by "stable YR". 5. It was yellow red in oxidizing and green in reducing atmosphere on the coloring test.ring test.

  • PDF

Ultimate Strength and Design Method of Turn-buckle for Measuring Tensile Force (인장력 측정용 턴버클의 극한강도 및 설계방법)

  • Lee, Swoo Heon;Shin, Kyung Jae;Lee, Hee Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.61-70
    • /
    • 2013
  • A turn-buckle is capable of adjusting the tensile force by left-hand threads and right-hand threads between tension members. There are different types of turn-buckles according to tension member and connection form but the practical and existing turn-buckles are incapable of measuring the tensile force. A turn-buckle for adjusting and measuring tensile force has therefore been developed. This study shows the ultimate strength and reliability for measurement of the new turn-buckles through finite element analysis of the developed ones. From analytic results of the new turn-buckles which have the measurement limit loads of 100kN, 200kN and 300kN, the ultimate strength is approximately five times stronger than the measurement limit capacity. Additionally, a review of the new turn-buckle, which has the measurement limit load of over 300kN, shows that there is a tendency for the size of turn-buckle to become larger. So the connection devices were designed and the loading test was conducted from the concept that the parallel connection of turn-buckle with 300kN capacity can measure the tensile force of 600kN. The results of parallel loading test show the sufficient possibility. Furthermore, the mock-up test was constructed to investigate the release of initial load and corrosion when the new turn-buckle is installed at the outdoor and exposed to rain and atmosphere.

On the Effect of Tube Attenuation on Measuring Water Vapor Flux Using a Closed-path Hygrometer (폐회로 습도계를 이용한 수증기 플럭스 관측시관의 감쇠 효과에 관하여)

  • Hong Jinkyu;Kim Joon;Choi Taejin;Yun Jin-il;Tanner Bert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.3
    • /
    • pp.80-86
    • /
    • 2000
  • Eddy covariance method is widely used in measuring vertical fluxes of mass and energy between the atmosphere and the biosphere. In this method, scalar concentration is measured with either open-path or closed-path sensors. For the latter, fluctuations of scalar concentration are attenuated as the sample travels through a long tube, resulting in flux loss. To quantify this tube attenuation, water vapor concentrations measured with both closed-path and open-path sensors were analyzed. Our statistical analysis showed that the power spectral density obtained from the closed-path sensor was different from that from the open-path sensor in the frequency range of > 0.5 Hz. The loss of water vapor flux due to tube attenuation was < 5% during midday. At nighttime, however, the flux loss increased significantly because of the low wind speeds and the weak turbulence sources. Theoretical calculation for the tube attenuation showed a small bias in high frequency range probably because of the interaction of sticky water vapor with a tube wall.

  • PDF