DOI QR코드

DOI QR Code

Efficiency of Superconducting Gravimeter Observations and Future Prospects

  • Neumeyer Juergen (GeoForschungsZentrum Potsdam, Dept. Geodesy and Remote Sensing, Telegrafenberg)
  • Published : 2005.02.01

Abstract

Superconducting Gravimeters (SG) are the most sensitive instruments for measuring temporal gravity variations. The gravimeter is an integrating sensor therefore the gravity variations caused by different sources must be separated for studying a special effect by applying different models and data analysis methods. The present reduction methods for gravity variations induced by atmosphere and hydrosphere including the ocean and the detection and determination of the most surface gravity effects are shown. Some examples demonstrate the combination of ground (SG) and space techniques especially the combination of SG with GRACE satellite derived temporal gravity variations. Resulting from the performance of the SG and the applied data analysis methods some proposals are made for future SG applications.

Keywords

References

  1. Baker, T. F. and M. S. Bos, 2003. Validating Earth and ocean tide models using tidal gravity measurements, Geophys. J. Int,. 152: 468-485 https://doi.org/10.1046/j.1365-246X.2003.01863.x
  2. Crossley, D., O. G. Jensenand, and J. Hinderer, 1995. Effective barometric admittance and gravity residuals, Phys. Earth Planet Int., 90: 221-241 https://doi.org/10.1016/0031-9201(95)05086-Q
  3. Crossley, D., 2004. Preface of the Global Geodynamic Project, Journal of Geodynamics, 38(3-5): 225- 236 https://doi.org/10.1016/j.jog.2004.07.002
  4. Dierks, O. and J. Neumeyer, 2002. Comparison of Earth Tides Analysis Programs, Bull. Inf., Marees Terrestres, 135: 10669-10688
  5. Doll, P., F. Kaspar, and B. Lehner, 2003. A global hydrological model for deriving water availability indicators: model tuning and validation, J. Hydrol., 270: 105-134 https://doi.org/10.1016/S0022-1694(02)00283-4
  6. Ducarme, B., H., P. Sun, and Q. Xu, 2002. New Investigations of tidal gravity results from the GGP network, Bull. Inf., Marees Terrestres, 136: 10761-10776
  7. Francis, O. and P. Mazzega, 1990. Global charts of ocean tide loading effects, J. Geophys. Res., 95: 11411-11424 https://doi.org/10.1029/JC095iC07p11411
  8. Harnisch, M. and G. Harnisch, 2004. Study of long term variations based on data of the GGP cooperation, Present. at 15th Symp. On Earth Tides, Ottawa
  9. Hartmann, T. and H. G. Wenzel, 1995. The HW95 tidal potential catalogue, Geophys. Res. Lett., 22(24): 3553-3556 https://doi.org/10.1029/95GL03324
  10. Hinderer, J. and D. Crossley, 2000. Time variations and interferences on the Earth's structure and dynamics Surveys, Geophysics, 21: 1-45 https://doi.org/10.1190/1.1438209
  11. Huang, J., H. M. Van den Dool, and K. P. Georgakakos, 1996. Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts, J. of Climate, 9: 1350-1362 https://doi.org/10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2
  12. Kroner, C., 1997. Reduktion von Luftdruckeffekten in zeitabhängigen Schwerebeobachtungen, Dissertation, Technische Universitat Clausthal
  13. Kroner, C., 2001. Hydrological effects on gravity data of the Geodynamic Observatory Moxa, J. Geodyn. Soc. Jpn., 47(1): 353-358
  14. Le Provost, C., F. Lyard, F. Lefevre, and L. Roblou, 2002. FES 2002 -A new version of the FES tidal solution series, Abstract Volume Jason-1 Science Working Team Meeting, Biarritz, France
  15. Merriam, J. B., 1992. Atmospheric pressure and gravity, Geophys. J. Int., 109: 488-500 https://doi.org/10.1111/j.1365-246X.1992.tb00112.x
  16. Methews, P. M., T. A. Herring, and B. A. Buffett, 2002. Modelling of nutation precision: New nutation series for nonrigid Earth and inside into the Earth's interior, J. Geophs. Res., 107(B4); ETG3-1: 3-30
  17. Milly, P. C. D. and A. B. Shmakin, 2002. Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) Model, J. Hydrometeorology, 3(3): 283-299 https://doi.org/10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2
  18. Neumeyer, J., 1995. Frequency dependent atmospheric pressure correction on gravity variations by means of cross spectral analysis, Bull. Inf., Marees Terrestres, 122: 9212-9220
  19. Neumeyer, J., F. Barthelmes, and D. Wolf, 1998. Atmospheric Pressure Correction for Gravity Data Using Different Methods, Proc. 13th Int. Symp. on Earth Tides, Brussels, 1997, Eds.: B. Ducarme and P. Paquet, pp.431-438
  20. Neumeyer, J., F. Barthelmes, L. Combrinck, O. Dierks, and P. Fourie, 2002. Analysis Results from the SG registration with the Dual Sphere Superconducting Gravimeter at SAGOS (South Africa), Bull. Inf., Marees Terrestres, 135: 10607-10616
  21. Neumeyer, J., J. Hagedoorn, J. Leitloff, and T. Schmidt, 2004a. Gravity reduction with threedimensional atmospheric pressure data for precise ground gravity measurements, J. Geodyn., 38(3-5): 437-450 https://doi.org/10.1016/j.jog.2004.07.006
  22. Neumeyer, J., P. Schwintzer, F. Barthelmes, O. Dierks, Y. Imanishi, C. Kroner, B. Meurers, H. P. Sun, and H. Virtanen, 2004b. Comparison of Superconducting Gravimeter and CHAMP satellite derived temporal gravity variations, in Earth observations with CHAMP Eds.: C. Reigber , H. Luhr , P. Schwintzer, J. Wickert, Springer-Verlag, pp.31-36
  23. Neumeyer, J., J. del Pino O. Dierk, H. P. Sun, and H. Pflug, 2005a. Improvement of Ocean Loading Correction on Gravity Data with Additional Tide Gauge Measurements, Submitted to J. Geodyn
  24. Neumeyer, J., F. Barthelmes, O. Dierks, F. Flechtner, M.H. Harnisch, J. Hinderer, Y. Imanishi, C. Kroner, B. Meurers, S. Petrovic, C. Reigber, R. Schmidt, P. Schwintzer, H.-P. Sun, and H. Virtanen, 2005b. Combination of temporal gravity variations resulting from Superconducting Gravimeter recordings, GRACE satellite observations and global hydrology models, Submitted to J. Geodesy
  25. Rosat, S, J. Hinderer, D. Crossley, and J.P. Boy, 2004. Performance of Superconducting gravimeters from long-period seismology to tides, J. Geodyn., 38(3-5): 461-476 https://doi.org/10.1016/j.jog.2004.07.005
  26. Rogers, G. and H. Dragert, 2003. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip, Science, 300: 1942-1943 https://doi.org/10.1126/science.1084783
  27. Slichter, L. B., 1961. The fundamental free mode of the Earth's inner core, Proc. Nat. Acad. Sci., 47(2): 186-190
  28. Sun, H. P., 1995. Static deformation and gravity changes at the Earth's surface due to the atmospheric pressure, Observatoire Royal des Belgique, Serie Geophysique Hors-Serie, Bruxelles
  29. Sun, H. P., H. Hsu, S. Luo, and J. Xu, 1999. Study of the ocean models using tidal gravity observations obtained with Superconducting Gravimeter, Acta Geodetica et Cartograophy Sinica, pp.64- 71
  30. Tamura, Y., 1990. BAYTAP-G Users Manual, Mizusawa National Astronomical Observatory
  31. Torge, W., 1989. Gravimetry; de Gruyter, Berlin, New York
  32. Tsoft, http://www.astro.oma.be/SEISMO/TSOFT/ tsoft.html
  33. Venedikov, A. P., J. Arnoso, and R. Vieira, 2001. Program VAV/2000 for tidal analysis of unevenly spaced data with irregular drift and coloured noise, J. Geodetic Society of Japan, 47(1): 281-286
  34. Warburton, R. J. and J. M. Goodkind, 1977. The influence of barometric-pressure variations on gravity, Geophys. J. R. Astr. Soc., 48: 281-292 https://doi.org/10.1111/j.1365-246X.1977.tb03672.x
  35. Wenzel, H. G., 1996. The nanogal software: data processing package Eterna 3.3, Bull. Inf., Marees Terrestres, 124: 9425-9439
  36. Widmer-Schmidrig, R., 2003. What can superconducting gravimeters contribute to normal mode seismology?, Bull. Seism. Soc. Am., 93(3): 1370-1380
  37. Wilson, C. R., J. Sharp, B. Scanlon, D. Pool, and T. Ferre, 2004. The Field Superconducting Gravimeter - A Hydro-geologic Sensor, Presentation at Int. Symp. on Gravity, Geoid, and Space Missions (GGSM2004), Porto, Portugal
  38. Xu, G., 2003. GPS Theory Algorithms and Applications, Springer-Verlag
  39. Zerbini, S., B. Richter, M. Negusini, M. Romagnoli, D. Simon, F. Domenichini, and W. Schwahn, 2001. Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth and Planetary Science Letters, 192: 267-279 https://doi.org/10.1016/S0012-821X(01)00445-9