Browse > Article
http://dx.doi.org/10.7780/kjrs.2005.21.1.15

Efficiency of Superconducting Gravimeter Observations and Future Prospects  

Neumeyer Juergen (GeoForschungsZentrum Potsdam, Dept. Geodesy and Remote Sensing, Telegrafenberg)
Publication Information
Korean Journal of Remote Sensing / v.21, no.1, 2005 , pp. 15-29 More about this Journal
Abstract
Superconducting Gravimeters (SG) are the most sensitive instruments for measuring temporal gravity variations. The gravimeter is an integrating sensor therefore the gravity variations caused by different sources must be separated for studying a special effect by applying different models and data analysis methods. The present reduction methods for gravity variations induced by atmosphere and hydrosphere including the ocean and the detection and determination of the most surface gravity effects are shown. Some examples demonstrate the combination of ground (SG) and space techniques especially the combination of SG with GRACE satellite derived temporal gravity variations. Resulting from the performance of the SG and the applied data analysis methods some proposals are made for future SG applications.
Keywords
Superconducting Gravimeter; Temporal Gravity Variation; Surface Gravity Effects; Space Techniques; GRACE; GPS.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Crossley, D., 2004. Preface of the Global Geodynamic Project, Journal of Geodynamics, 38(3-5): 225- 236   DOI   ScienceOn
2 Dierks, O. and J. Neumeyer, 2002. Comparison of Earth Tides Analysis Programs, Bull. Inf., Marees Terrestres, 135: 10669-10688
3 Harnisch, M. and G. Harnisch, 2004. Study of long term variations based on data of the GGP cooperation, Present. at 15th Symp. On Earth Tides, Ottawa
4 Huang, J., H. M. Van den Dool, and K. P. Georgakakos, 1996. Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts, J. of Climate, 9: 1350-1362   DOI   ScienceOn
5 Merriam, J. B., 1992. Atmospheric pressure and gravity, Geophys. J. Int., 109: 488-500   DOI
6 Milly, P. C. D. and A. B. Shmakin, 2002. Global modeling of land water and energy balances. Part I: The Land Dynamics (LaD) Model, J. Hydrometeorology, 3(3): 283-299   DOI   ScienceOn
7 Neumeyer, J., P. Schwintzer, F. Barthelmes, O. Dierks, Y. Imanishi, C. Kroner, B. Meurers, H. P. Sun, and H. Virtanen, 2004b. Comparison of Superconducting Gravimeter and CHAMP satellite derived temporal gravity variations, in Earth observations with CHAMP Eds.: C. Reigber , H. Luhr , P. Schwintzer, J. Wickert, Springer-Verlag, pp.31-36
8 Neumeyer, J., J. del Pino O. Dierk, H. P. Sun, and H. Pflug, 2005a. Improvement of Ocean Loading Correction on Gravity Data with Additional Tide Gauge Measurements, Submitted to J. Geodyn
9 Rosat, S, J. Hinderer, D. Crossley, and J.P. Boy, 2004. Performance of Superconducting gravimeters from long-period seismology to tides, J. Geodyn., 38(3-5): 461-476   DOI   ScienceOn
10 Tsoft, http://www.astro.oma.be/SEISMO/TSOFT/ tsoft.html
11 Doll, P., F. Kaspar, and B. Lehner, 2003. A global hydrological model for deriving water availability indicators: model tuning and validation, J. Hydrol., 270: 105-134   DOI   ScienceOn
12 Le Provost, C., F. Lyard, F. Lefevre, and L. Roblou, 2002. FES 2002 -A new version of the FES tidal solution series, Abstract Volume Jason-1 Science Working Team Meeting, Biarritz, France
13 Crossley, D., O. G. Jensenand, and J. Hinderer, 1995. Effective barometric admittance and gravity residuals, Phys. Earth Planet Int., 90: 221-241   DOI   ScienceOn
14 Neumeyer, J., F. Barthelmes, L. Combrinck, O. Dierks, and P. Fourie, 2002. Analysis Results from the SG registration with the Dual Sphere Superconducting Gravimeter at SAGOS (South Africa), Bull. Inf., Marees Terrestres, 135: 10607-10616
15 Venedikov, A. P., J. Arnoso, and R. Vieira, 2001. Program VAV/2000 for tidal analysis of unevenly spaced data with irregular drift and coloured noise, J. Geodetic Society of Japan, 47(1): 281-286
16 Zerbini, S., B. Richter, M. Negusini, M. Romagnoli, D. Simon, F. Domenichini, and W. Schwahn, 2001. Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth and Planetary Science Letters, 192: 267-279   DOI   ScienceOn
17 Baker, T. F. and M. S. Bos, 2003. Validating Earth and ocean tide models using tidal gravity measurements, Geophys. J. Int,. 152: 468-485   DOI   ScienceOn
18 Hartmann, T. and H. G. Wenzel, 1995. The HW95 tidal potential catalogue, Geophys. Res. Lett., 22(24): 3553-3556   DOI
19 Francis, O. and P. Mazzega, 1990. Global charts of ocean tide loading effects, J. Geophys. Res., 95: 11411-11424   DOI
20 Tamura, Y., 1990. BAYTAP-G Users Manual, Mizusawa National Astronomical Observatory
21 Hinderer, J. and D. Crossley, 2000. Time variations and interferences on the Earth's structure and dynamics Surveys, Geophysics, 21: 1-45   DOI
22 Neumeyer, J., 1995. Frequency dependent atmospheric pressure correction on gravity variations by means of cross spectral analysis, Bull. Inf., Marees Terrestres, 122: 9212-9220
23 Widmer-Schmidrig, R., 2003. What can superconducting gravimeters contribute to normal mode seismology?, Bull. Seism. Soc. Am., 93(3): 1370-1380
24 Xu, G., 2003. GPS Theory Algorithms and Applications, Springer-Verlag
25 Kroner, C., 2001. Hydrological effects on gravity data of the Geodynamic Observatory Moxa, J. Geodyn. Soc. Jpn., 47(1): 353-358
26 Warburton, R. J. and J. M. Goodkind, 1977. The influence of barometric-pressure variations on gravity, Geophys. J. R. Astr. Soc., 48: 281-292   DOI
27 Rogers, G. and H. Dragert, 2003. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip, Science, 300: 1942-1943   DOI   PUBMED   ScienceOn
28 Kroner, C., 1997. Reduktion von Luftdruckeffekten in zeitabhängigen Schwerebeobachtungen, Dissertation, Technische Universitat Clausthal
29 Methews, P. M., T. A. Herring, and B. A. Buffett, 2002. Modelling of nutation precision: New nutation series for nonrigid Earth and inside into the Earth's interior, J. Geophs. Res., 107(B4); ETG3-1: 3-30
30 Wenzel, H. G., 1996. The nanogal software: data processing package Eterna 3.3, Bull. Inf., Marees Terrestres, 124: 9425-9439
31 Neumeyer, J., J. Hagedoorn, J. Leitloff, and T. Schmidt, 2004a. Gravity reduction with threedimensional atmospheric pressure data for precise ground gravity measurements, J. Geodyn., 38(3-5): 437-450   DOI   ScienceOn
32 Neumeyer, J., F. Barthelmes, O. Dierks, F. Flechtner, M.H. Harnisch, J. Hinderer, Y. Imanishi, C. Kroner, B. Meurers, S. Petrovic, C. Reigber, R. Schmidt, P. Schwintzer, H.-P. Sun, and H. Virtanen, 2005b. Combination of temporal gravity variations resulting from Superconducting Gravimeter recordings, GRACE satellite observations and global hydrology models, Submitted to J. Geodesy
33 Wilson, C. R., J. Sharp, B. Scanlon, D. Pool, and T. Ferre, 2004. The Field Superconducting Gravimeter - A Hydro-geologic Sensor, Presentation at Int. Symp. on Gravity, Geoid, and Space Missions (GGSM2004), Porto, Portugal
34 Torge, W., 1989. Gravimetry; de Gruyter, Berlin, New York
35 Slichter, L. B., 1961. The fundamental free mode of the Earth's inner core, Proc. Nat. Acad. Sci., 47(2): 186-190
36 Ducarme, B., H., P. Sun, and Q. Xu, 2002. New Investigations of tidal gravity results from the GGP network, Bull. Inf., Marees Terrestres, 136: 10761-10776
37 Sun, H. P., H. Hsu, S. Luo, and J. Xu, 1999. Study of the ocean models using tidal gravity observations obtained with Superconducting Gravimeter, Acta Geodetica et Cartograophy Sinica, pp.64- 71
38 Neumeyer, J., F. Barthelmes, and D. Wolf, 1998. Atmospheric Pressure Correction for Gravity Data Using Different Methods, Proc. 13th Int. Symp. on Earth Tides, Brussels, 1997, Eds.: B. Ducarme and P. Paquet, pp.431-438
39 Sun, H. P., 1995. Static deformation and gravity changes at the Earth's surface due to the atmospheric pressure, Observatoire Royal des Belgique, Serie Geophysique Hors-Serie, Bruxelles