• Title/Summary/Keyword: measurement site

Search Result 1,437, Processing Time 0.043 seconds

Evaluation of Attenuation Rate Error on Skin Dosimeter using Monte Carlo Simulation in Photon and Electron Beam Therapy (광자선 및 전자선 치료에서 피부선량계의 측정과 시뮬레이션을 이용한 감약률 오차 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Heo, Seung-Uk;Bae, Sang-Il;Moon, Young-Min;Park, Sung-Kwang;Kim, Jin-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.841-848
    • /
    • 2020
  • In the field of radiation therapy using photon beams and electron beams, since each patient has a different sensitivity to radiation, skin side effects may occur even at the same dose. Therefore, if there is a risk of excessive dose to the skin, a dosimeter is attached to verify whether the correct dose is being investigated. However, since the skin dosimeter checks the attachment site visually by measuring a point dose, it is difficult to confirm an accurate dose distribution. As a result, the measurement and simulation errors of the material HgI2 in the 6 MV photon beam were 3.73% and 5.24%, respectively, at the minimum thickness of 25 ㎛, and the material PbI2 was 4.73% and 5.65%, respectively. On the other hand, as a result of the 6 MeV electron beam, the measurement and simulation errors of the material HgI2 were 1.35% and 1.12%, respectively, at a minimum thickness of 25 ㎛, and the material PbI2 showed relatively low attenuation error, 1.67% and 1.20%, respectively. Therefore, it was evaluated that the thickness of the photon beam within 25 ㎛ and the electron beam within 100 ㎛ is suitable to have a reduction rate error within 5%. This study presents a new research direction for a flexible dosimeter attached to the human body that is required in clinical practice and the construction conditions of a future skin dosimeter.

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Impact-Resistance Behavior under Impact Loading (충돌하중을 받는 이방향 비부착 프리스트레스트 콘크리트 패널부재의 충돌저항성능에 대한 실험적 거동 평가)

  • Yi, Na-Hyun;Lee, Sang-Won;Lee, Seung-Jae;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.485-496
    • /
    • 2013
  • In recent years, frequent terror or military attacks by explosion or impact accidents have occurred. Examplary case of these attacks were World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. These attacks of the civil infrastructure have induced numerous casualties and property damage, which raised public concerns and anxiety of potential terrorist attacks. However, a existing design procedure for civil infrastructures do not consider a protective design for extreme loading scenario. Also, the extreme loading researches of prestressed concrete (PSC) member, which widely used for nuclear containment vessel, gas tank, bridges, and tunnel, are insufficient due to experimental limitations of loading characteristics. To protect concrete structures against extreme loading such as explosion and impact with high strain rate, understanding of the effect, characteristic, and propagation mechanism of extreme loadings on structures is needed. Therefore, in this paper, to evaluate the impact resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, impact tests were carried out on $1400mm{\times}1000mm{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PS), prestressed concrete with rebar (PSR, general PSC) specimens. According to test site conditions, impact tests were performed with 14 kN impactor with drop height of 10 m, 5 m, 4 m for preliminary tests and 3.5 m for main tests. Also, in this study, the procedure, layout, and measurement system of impact tests were established. The impact resistance capacity was measured using crack patterns, damage rates, measuring value such as displacement, acceleration, and residual structural strength. The results can be used as basic research references for related research areas, which include protective design and impact numerical simulation under impact loading.

Vertical Profiles and Assessment of Trace Metals in Sediment Cores From Outer Sea of Lake Shihwa, Korea (시화호 외측 해역 주상 퇴적물 내 미량금속 수직분포 특성 및 오염도 평가)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Eu-Yeol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.71-81
    • /
    • 2013
  • Trace metal concentration in sediment cores from the outer sea of Lake Shihwa were determined to study the vertical profiles of metal concentrations and to evaluate the levels of metal contamination. Sediment pollution assessment was carried out using enrichment factor (EF) and geo-accumulation index (Igeo). The mean concentration of metals were 58.8 mg/kg for Cr, 10.3 mg/kg for Co, 22.8 mg/kg for Ni, 18.1 mg/kg for Cu, 74.0 mg/kg for Zn, 6.75 mg/kg for As, 0.14 mg/kg for Cd, 27.4 mg/kg for Pb and 0.026 mg/kg for Hg, respectively. The mean EF values for Cu, Zn, As, Cd and Hg were greater than 1.5 in sediment cores, indicating that these metals in sediments are slightly enriched by anthropogenic activities. The geo-accumulation index (Igeo) suggested unpolluted status for metals of sediments collected from outer see of Lake Shihwa. Igeo values for Cu and Hg nearby LNG station (site C, D, E) ranged from 1 to 2, indicating moderately to unpolluted pollution status for those metals. Even if the higher concentrations of trace metals nearby LNG station were observed, there is significantly positive relationship between Al and trace metals. Thus, the sediment grain size plays an important roles in influencing the distribution of trace metals in sediment cores from the outer sea of Lake Shihwa. Based on the comparison with sediment quality guidelines such as threshold effect level and probable effect level in Korea, the concentration of metals in sediments from outer sea of Lake Shihwa are likely to result in no harmful effects on sediment-dwelling organisms.

GFRs Measured by Gates' Method According to 5 Background Sites: Comparison with GFR Measured by I-125-Iothalamate Method (다양한 배후 방사능 설정에 따른 Cates 법 사구체 여과율의 차이: I-125-Iothalamate 측정법과의 비교)

  • Jung, Hyun-Seok;Chung, Yong-An;Kim, Sung-Hoon;Kim, Chung-Ho;Lee, Sung-Young;Sohn, Hyung-Seon;Baik, Jun-Hyun;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.306-310
    • /
    • 2004
  • Purpose: The aim was to assess how the background site affects the Gates' glomerular filtration rate(GFR) measurement using Tc-99m-DTPA in correlation with GFR by I-125-lothalamate method. Material and methods: The study populations were 63 adults with 39 men and 24 women aged from 20 to 59 yrs (mean=37.9 yrs). The fellowing five background regions of interest were used in measurement of GFR using Gates' method: 1) lower side of each kidney(subrenal), 2) around each kidney(circumferential), 3) upper side of each kidney(suprarenal), 4) lateral side of each kidney(lateral), 5) between the two kidneys(inter-renal). We also measured GFR using I-125-iothalamate in each subject. The two studies were separated by 1 to 3 weeks. The subjects were divided into two groups by renal depth. Group 1 with renal $depth{\geq}7cm$ and group 2 with renal depth<7cm. We calculated the means and standard deviations of the GFRs measured by two studies. And we statistically analyzed the correlation and differences among GFRs by Gates' method and the GFR by iothalamate method with correlation analysis. Results: The GFRs by Gates' method using suprarenal and inter-renal background correction showed better correlation with the GFR measured by I-125-iothalamate. And GFRs measured by Gates' method showed statistically significant correlation with the GFR measured by I-125-iothalamate in the group with renal depth<7cm. But GFRs measured by Gates' method did not show statistically significant correlation with the GFR measured by I-125-iothalamate in the group with renal $depth{\geq}7cm$. Conclusion: GFRs measured with Gates' method showed higher correlation with the GFR measured by I-125-iothalamate when the regions of interest were plated over the suprarenal and inter-renal backgrounds. And GFRs measured with Gates method showed statistically significant correlation with the GFR measured by I-125-iothalamate in the group with renal depth<7cm.

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.

Corrections on CH4 Fluxes Measured in a Rice Paddy by Eddy Covariance Method with an Open-path Wavelength Modulation Spectroscopy (개회로 파장 변조 분광법과 에디 공분산 방법으로 논에서 관측된 CH4 플럭스 자료의 보정)

  • Kang, Namgoo;Yun, Juyeol;Talucder, M.S.A.;Moon, Minkyu;Kang, Minseok;Shim, Kyo-Moon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • $CH_4$ is a trace gas and one of the key greenhouse gases, which requires continuous and systematic monitoring. The application of eddy covariance technique for $CH_4$ flux measurement requires a fast-response, laser-based spectroscopy. The eddy covariance measurements have been used to monitor $CO_2$ fluxes and their data processing procedures have been standardized and well documented. However, such processes for $CH_4$ fluxes are still lacking. In this note, we report the first measurement of $CH_4$ flux in a rice paddy by employing the eddy covariance technique with a recently commercialized wavelength modulation spectroscopy. $CH_4$ fluxes were measured for five consecutive days before and after the rice transplanting at the Gimje flux monitoring site in 2012. The commercially available $EddyPro^{TM}$ program was used to process these data, following the KoFlux protocol for data-processing. In this process, we quantified and documented the effects of three key corrections: (1) frequency response correction, (2) air density correction, and (3) spectroscopic correction. The effects of these corrections were different between daytime and nighttime, and their magnitudes were greater with larger $CH_4$ fluxes. Overall, the magnitude of $CH_4$ flux increased on average by 20-25% after the corrections. The National Center for AgroMeteorology (www.ncam.kr) will soon release an updated KoFlux program to public users, which includes the spectroscopic correction and the gap-filling of $CH_4$ flux.

Effect of Botulinum Toxin type A and Occlusal Splint on Masseter Muscle Evaluated with Computed Tomographic Measurement (전산화 단층촬영으로 평가한 교근에 대한 보툴리눔 A형 독소주사와 교합안정장치의 효과)

  • Jang, Hee-Young;Kang, Seung-Chul;Kim, Seong-Taek;Kim, Chong-Youl;Choi, Jong-Hoon
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.2
    • /
    • pp.247-255
    • /
    • 2005
  • The purpose of this study is to evaluate the effect of botulinum toxin type A on masseter muscle atrophy and the extent of masseter muscle affected from the injection site in relation to injection dose, with and without occlusal splint therapy through computed tomographic measurement. 32 volunteers were divided into four groups - group 25U (injection dose of 25 unit), group 25Us (injection dose of 25 unit with occlusal splint), group 35U (injection dose of 35 unit), group 35Us (injection dose of 35 unit with occlusal splint). Each group consisted of 8 people. 3 positions (position 1, 2, 3 - 10mm, 20mm and 40mm from the inferior border of the mandible, respectively) were selected for the evaluation of the masseter muscle change. The following results were obtained. 1. The thickness and the cross-sectional area of the masseter muscle had reduced in all groups except for the right side thickness at position 3 of group 25U and group 25Us, and the right side thickness as well as the left side cross-sectional area at position 3 of group 35Us. In group 35Us, the thickness and the cross-sectional area of the masseter muscle had reduced significantly in all positions (P < 0.05). 2. There was no significant difference in the masseter muscle change between the injection dose of 25unit and that of 35unit. 3. The groups with occlusal splint showed greater reduction of the masseter muscle thickness than the other groups (P < 0.05). From the above results, botulinum toxin type A injection together with occlusal splint therapy in the treatment of masseter muscle hypertrophy would be clinically effective.

Conservation of Removing Surface Contaminants on Silla monument at Jungsung-ri using Nd:YAG Laser Cleaning System (Nd/YAG레이저를 이용한 포항중성리신라비 표면오염물 제거와 보존처리)

  • Lee, Tae Jong;Kim, Sa Dug;Lee, Joo Wan;Oh, Jung Hyeon;Lee, Myeong Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.4
    • /
    • pp.142-153
    • /
    • 2011
  • 'Silla Monument Stone in Jungseong-ri, Pohang' was discovered in Pohang City, Gyeongsangbuk Province of Korea in 2009. The monument stone with irregular shape has dimensions of maximum height of 105cm, width of 47.6~49.6cm, thickness of 13.8~14.7cm and weight of 115kg. The results of monument stone was found to be granitite. Conservation treatment procedure was carried out in the order of production of Weathering map, cleaning of surface pollutants, consolidation using ethyl silicate. Black pollutant(crust) that covered more than 60% of the surface was analyzed first in order to remove the pollutants on the surface of the monumental stone by cleaning of surface pollutants using laser. The purpose on analysis was not only to verify the pollutants on the stone but also to carry out preliminary cleaning by securing rocks with same pollutant as the monumental stone. As the results of analysis using p-XRF(PMI. INNOV-X, USA) on the site, high level of Mn and Fe were detected, and the analysis of small section that had been fallen off with SEM/EDX for the purpose of quantitative analysis also detected high level of Mn. The Similar contaminants on Stone secured in the manner described above were made into 10 samples ($5cm{\times}5cm$) and was subjected to preliminary cleaning by Nd-YAG Laser(Laser&Physics, Korea). The results of surface observation through portable microscope during cleaning revealed that the power of 460mJ, wavelength of 1064nm and irradiation frequency of 1,800~2,300 per $25cm^2$ were most effective. Evaluation on the preservative treatment was made through confirmation of the extent of removal through color-difference meter measurement and component analysis prior to and following removal of the pollutants. As the result of color-difference meter measurement increase in the brightness was evidenced by the increase in the brightness ($L^*$)value from 33 to 49, and it was possible to ascertain the reduction in the pollutants as the content of Mn was reduced by about 80% from $50,000{\pm}5,000ppm$ to $10,000{\pm}2,000pmm$ from the result of component analysis.

Climate-Smart Agriculture (CSA)-Based Assessment of a Rice Cultivation System in Gimje, Korea (한국 김제의 벼 경작 시스템의 기후스마트농업 (Climate-Smart Agriculture) 기반의 평가)

  • Talucder, Mohammad Samiul Ahsan;Kim, Joon;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.235-250
    • /
    • 2021
  • The overarching question of this study is how a typical rice cultivation system in Gimje, Korea was keeping up with the triple-win challenge of climate-smart agriculture (CSA). To answer this question, we have employed (1) quantitative data from direct measurement of energy, water, carbon and information flows in and out of a rice cultivation system and (2) appropriate metrics to assess production, efficiency, GHG fluxes, and resilience. The study site was one of the Korean Network of Flux measurement (KoFlux) sites (i.e., GRK) located at Gimje, Korea, managed by National Academy of Agricultural Science, Rural Development Administration. Fluxes of energy, water, carbon dioxide (CO2) and methane (CH4) were directly measured using eddy-covariance technique during the growing seasons of 2011, 2012 and 2014. The production indicators include gross primary productivity (GPP), grain yield, light use efficiency (LUE), water use efficiency (WUE), and carbon uptake efficiency (CUE). The GHG mitigation was assessed with indicators such as fluxes of carbon dioxide (FCO2), methane (FCH4), and nitrous oxide (FN2O). Resilience was assessed in terms of self-organization (S), using information-theoretic approach. Overall, the results demonstrated that the rice cultivation system at GRK was climate-smart in 2011 in a relative sense but failed to maintain in the following years. Resilience was high and changed little for three year. However, the apparent competing goals or trade-offs between productivity and GHG mitigation were found within individual years as well as between the years, causing difficulties in achieving the triple-win scenario. The pursuit of CSA requires for stakeholders to prioritize their goals (i.e., governance) and to practice opportune interventions (i.e., management) based on the feedback from real-time assessment of the CSA indicators (i.e., monitoring) - i.e., a purpose-driven visioneering.

Evaluation of the usefulness of the method according to changes in patient breathing during chest 4D CT imaging (흉부 4D CT에서 호흡 변화에 대한 일시 중지 및 재개 방법의 유용성 평가)

  • Heo, Sol;Shin, Chung Hun;Jeong, Hyun Sook;Yoo, Soon Mi;Kim, Jeong Mi;Yun, In Ha;Hong, Seung Mo;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.47-54
    • /
    • 2021
  • Purpose : In order to evaluate the usefulness of clinical application of the Pause & Resume methods by comparing and analyzing the data stability and dose reduction effect when repeat scan assuming irregular breathing and using the Pause & Resume method during chest 4D CT using QuasarTM Phantom. Materials and Methods : Using the QuasarTM Phantom, set the breathing rate per minute to 15 BPM and 7.5 BPM, and set the S15 point as an irregular breathing section, and then placed OSLD to this point and use the Pause & Resume method to measure the dose of S15. CTDIvol, DLP, and ALARA-CT were used for comparative analysis of radiation dose between Pause & Resume method and Repeat-scan. In order to evaluate the stability and usability of the data applying the Pause & Resume method, the captured images were sorted by Advanced Workstation Volume Share7 and then sent to EclipseTM, the diameter and volume were analyzed by forming a contour on the iron ball in the QuasarTM Phantom Results : When using Pause & Resume, the dose of OSLD measurement increased by 1.97 times in the section of S15. As a result of image evaluation, the average value of all volumes measured with and without the Pause & Resume method at 15 BPM and 7.5 BPM was 15.2 cm3±0.5%.Allthemeasuredvaluesfor the radius of iron ball were 3.1 cm regardless of whether Pause & Resume method was used or not. In the case of using Pause & Resume, 33% decreased from the lowest DLP value and 38% decreased from the highest DLP value of repeat scan, and the effective dose also decreased 32.1% from the minimum value and 37.6% from the maximum value. Conclusion: Irradiation dose was increased by Pause & Resume method because of the repeat scan on the S15 site where assuming irregular breathing occurred, However Pause & Resume method led to a significant reduction in dose on overall scan range. It also proved the usefulness of clinical application of the Pause & Resume method as a result of similar diameters and volumes of iron ball measurement.