DOI QR코드

DOI QR Code

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B

수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B

  • Received : 2020.08.10
  • Accepted : 2020.08.24
  • Published : 2020.08.31

Abstract

This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.

본 수치해석연구에서는 국제공동연구프로젝트 DECOVALEX2019의 Task B의 일환으로 PFC3D를 기반으로한 수리역학연계모델을 개발하여 스위스 Mont Terri 지하연구시설에서 수행된 단층의 유체주입으로 인한 슬립시험을 모사하였다. 이를통해, 개발한 PFC3D 수리역학연계모델이 가진 한계점과 향후 보완할 점을 검토하고자 하였다. PFC3D를 기반으로한 3차원 입자결합모델 내 공극-유동통로모델을 생성하였으며 이를 사용하여 Mont Terri Step 2 단층내 유체주입실험을 모사하였다. 모델링결과 단층대를 따라 주입유체의 유동에 의한 단층대의 변형을 확인하였지만, 관측정에서의 시간에 따른 수압변화는 현장측정치와 부분적으로 일치하는 경향을 확인하였다. 현장측정 관측수압은 초기 유체주입 압력증가에 거의 변화를 보이지 않고 주입수압이 최대치에 도달할때쯤 급격한 증가를 보이는반면, 모델링에서는 주입압력이 증가함에 따라 관측수압도 부드럽게 증가하는 경향을 보였다. 이러한 부분적으로 일치하는 결과의 원인으로는 Mont Terri 현장의 단층을 모사하는 방법에 기인하는 것으로 판단하다. PFC3D에서는 단층을 손상대와 코어균열의 조합으로 모사하였고 단층대의 두께가 약 2 m로 주입유체가 단층대를 통해 유동하도록 모사하였기에 현장에서의 주입유체의 단층내 유동보다 그 유동범위가 크게 모사되었다고 판단한다. 또한, 현장단층에서와 같이 단층내부에 존재하는 충진물질로 인해 단층내 수리유동이 제한되어 국부적으로 과잉공급수압이 형성될 수 있는 기재를 모사하지 못한 점 또한 모델링 결과와 현장측정결과가 부분적으로 일치하는 원인일 수 있다. 단층변형의 경우는 모델링결과와 현장측정결과 유사한 수준으로 일치하는 결과를 확인하였다. 수치모델을 변형하여 단층대의 두께를 감소시키고 단층내 충진 물질의 비균질적인분포를 모사할 수 있는 방법론에 대한 후속 연구를 통해 PFC3D 수리역학연계모델의 유체주입으로 인한 단층활성화 연구로의 적용성을 향상시키는 것을 제안하고 한다.

Keywords

References

  1. Guglielmi, Y., Cappa, F., Lanc, H., Janowczyk, J.B., Rutqvist, J., Tsang, C.-F. and Wang, J.S.Y. ISRM suggested method for step-rate injection method for fracture in-situ properties (SIMFIP): Using a 3-component Borehole Deformation Sensor. Rock Mechanics and Rock Engineering 47, 303-311 (2014). https://doi.org/10.1007/s00603-013-0517-1
  2. Guglielmi Y, Elsworth D, Cappa F, Henty P, Gout C, Dick P, Durand J. 2015. In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales. J Geophys Res Solid Earth 120, https://doi.org/10.1002/2015JB012158
  3. Guglielmi Y, Birkholzer J, Rutqvist J, Jeanne P, Nussbaum C. 2017. Can Fault Leakage Occur Before or Without Reactivation? Results from an In Situ Fault Reactivation Experiment at Mont Terri. Energy Procedia 114, 3167-3174, https://doi.org/10.1016/j.egypro.2017.03.1445
  4. Guglielmi Y, Nussbaum C, Jeanne P, Rutqvist J, Cappa F, Birkholzer J. 2020. Complexity of Fault Rupture and Fluid Leakage in Shale: Insights From a Controlled Fault Activation Experiment. Journal of Geophysical Research: Solid Earth, 125, e2019JB017781. https://doi.org/10.1029/2019JB017781
  5. Hazzard, J.F., Young, R.P., Oates, S.J., 2002. Numerical modeling of seismicity induced by fluid injection in a fractured reservoir. In: Proceedings of the 5th North American Rock Mechanics Symposium, Mining and Tunnel Innovation and Opportunity, Toronto, Canada, 7-10 July 2002, pp. 1023-1030.
  6. Hokmark H, Lommqvist M, Falth B. 2010. THM-issues in repository rock Thermal, mechanical, thermo-mechanical and hydro-mechanical evolution of the rock at the Forsmark and Laxemar sites. TR-10-23 Swedish Nuclear Fuel and Waste Management Co.
  7. Itasca Consulting Group. 2019. Particle Flow Code 3D version 5.0.
  8. Jia Y, Wu W, Kong XZ. 2020a. Injection-induced slip heterogeneity on faults in shale reservoirs. Int J Rock Mech & Min Sci 131, 104363. https://doi.org/10.1016/j.ijrmms.2020.104363
  9. Ji Y, Wanniarachchi WAM, Wu W. 2020b. Effect of fluid pressure heterogeneity on injection-induced fracture activation. Computers and Geotechnics 123, 103589. https://doi.org/10.1016/j.compgeo.2020.103589
  10. Kolditz O, Bauer S, Bilke L, Bottcher N, Delfs JO, Fischer T, Gorke UJ, Kalbacher T, Kosakowski G, Mcdermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B. 2012. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences 67, 589-599. https://doi.org/10.1007/s12665-012-1546-x
  11. Lin A, Yamashita K. 2013. Spatial variations in damage zone with along strike-slip faults: An example from active faults in sourthwest Japan. J Struct Geol 57, 1-15. https://doi.org/10.1016/j.jsg.2013.10.006
  12. Mas Ivars D, Pierce ME, Darcel C, Reyes-Montes J, Potyondy DO, Young RP, Cundall PA. 2011. The syntheric rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci 48: 219-244. https://doi.org/10.1016/j.ijrmms.2010.11.014
  13. Nguyen TS, Guglielmi Y, Graupner B, Rutqvist J. 2019. Mathematical Modelling of Fault Reactivation Induced by Water Injection. Minerals 9, 282. https://doi.org/10.3390/min9050282
  14. Park J-W, Park E-S, Kim T, Lee C, Lee J. 2018a. Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 Task B (Step 1). Tunnel and Underground Space 28, 400-425. https://doi.org/10.7474/TUS.2018.28.5.400
  15. Park J-W, Kim T, Part E-S, Lee C. 2018b. Coupled Hydro-Mechanical Modelling of Fault Reactivation by Water Injection: DECOVALEX-2019 Task B (Benchkmark Model Test). Tunnel and Underground Space 28, 670-691. https://doi.org/10.7474/TUS.2018.28.6.670
  16. Park J-W, Guglielmin Y, Graupner B, Rutqvist J, Kim T, Park E-S, Lee C. 2020. Modeling of fluid injection-induced fault reactivation using coupled fluid flow and mechanical interface model. Int J Rock Mech & Min Sci 132, 104373. https://doi.org/10.1016/j.ijrmms.2020.104373
  17. Passelegue FX, Brantut N, Mitchell TM. 2018. Fault Reactivation by Fluid Injection: Controls From Stress State and Injection Rate. Geophysical Research Letters 45, 12837-12846. https://doi.org/10.1029/2018GL080470
  18. Urpi L, Graupner B, Wang W, Nagel T, Rinaldi AP. 2020. Hydro-mechanical fault reactivation modeling based on elasto-plasticity with embedded weakness planes. J Rock Mech & Geotech Eng 12, 877-885. https://doi.org/10.1016(j.jrmge.2020.06.001 https://doi.org/10.1016/j.jrmge.2020.06.001
  19. Yoon JS, Zang A, Stephansson O. 2014. Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydro-mechanical coupled discrete particles joints model. Geothermics 52, 165-184. https://doi.org/10.1016/j.geothermics.2014.01.009
  20. Yoon JS, Zang A, Stephansson O, Hofmann H, Zimmermann G. 2017. Discrete Element Modelling of Hydraulic Fracture Propagation and Dynamic Interaction with Natural Fractures in Hard Rock. Procedia Engineering 191, 1023-1031. https://doi.org/10.1016/j.proeng.2017.05.275
  21. Zang A., Oye V, Jousset P, Deichmann N, Gritto R, McGarr A, Majer E, Bruhn D. 2014. Analysis of induced seismicity in geothermal reservoirs - An overview. Geothermics 52, 6-21. https://doi.org/10.1016/j.geothermics.2014.06.005