Browse > Article
http://dx.doi.org/10.5532/KJAFM.2021.23.4.235

Climate-Smart Agriculture (CSA)-Based Assessment of a Rice Cultivation System in Gimje, Korea  

Talucder, Mohammad Samiul Ahsan (Department of Agroforestry & Environmental Science, Sylhet Agricultural University)
Kim, Joon (Interdisciplinary Program in Agricultural & Forest Meteorology, Seoul National University)
Shim, Kyo-Moon (National Institute of Agricultural Science)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.23, no.4, 2021 , pp. 235-250 More about this Journal
Abstract
The overarching question of this study is how a typical rice cultivation system in Gimje, Korea was keeping up with the triple-win challenge of climate-smart agriculture (CSA). To answer this question, we have employed (1) quantitative data from direct measurement of energy, water, carbon and information flows in and out of a rice cultivation system and (2) appropriate metrics to assess production, efficiency, GHG fluxes, and resilience. The study site was one of the Korean Network of Flux measurement (KoFlux) sites (i.e., GRK) located at Gimje, Korea, managed by National Academy of Agricultural Science, Rural Development Administration. Fluxes of energy, water, carbon dioxide (CO2) and methane (CH4) were directly measured using eddy-covariance technique during the growing seasons of 2011, 2012 and 2014. The production indicators include gross primary productivity (GPP), grain yield, light use efficiency (LUE), water use efficiency (WUE), and carbon uptake efficiency (CUE). The GHG mitigation was assessed with indicators such as fluxes of carbon dioxide (FCO2), methane (FCH4), and nitrous oxide (FN2O). Resilience was assessed in terms of self-organization (S), using information-theoretic approach. Overall, the results demonstrated that the rice cultivation system at GRK was climate-smart in 2011 in a relative sense but failed to maintain in the following years. Resilience was high and changed little for three year. However, the apparent competing goals or trade-offs between productivity and GHG mitigation were found within individual years as well as between the years, causing difficulties in achieving the triple-win scenario. The pursuit of CSA requires for stakeholders to prioritize their goals (i.e., governance) and to practice opportune interventions (i.e., management) based on the feedback from real-time assessment of the CSA indicators (i.e., monitoring) - i.e., a purpose-driven visioneering.
Keywords
Climate-smart agriculture; Rice; GHG mitigation; Resilience; Eddy covariance flux;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Forster, P., V. Ramaswamy, P. Artaxo, T. Bernsten, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, 2007: Changes in atmospheric constituents and in radiative forcing. In: Climate Change. 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon S, D Qin, M Manning et al.), 130-234. Cambridge University Press, Cambridge, UK.
2 Santamaria-Bonfil,.G.,.N..Fernandez, and C. Gershenson, 2016: Measuring the complexity of continuous distributions Entropy 18(3), 72.   DOI
3 Zaccarelli, N., B. L. Li, I. Petrosillo, and G. Zurlini, 2013: Order and disorder in ecological time-series: introducing normalized spectral entropy. Ecological Indicators 28, 22-30.   DOI
4 Diaz, M. B., D. R. Roberti, J. V. Carneiro, V. d. A. Souza, and O. L. L. de Moraes, 2019: Dynamics of the superficial fluxes over a flooded rice paddy in southern Brazil. Agricultural and Forest Meteorology 276(277), 107650. doi:10.1016/j.agrformet.2019.107650   DOI
5 Pereira, J., N. Figueiredo, P. Goufo, J. Carneiro, R. Morais, C. Carranca, J. Coutinho, and H. Trindade, 2013: Effects of elevated temperature and atmospheric carbon dioxide concentration on the emissions of methane and nitrous oxide from Portuguese flooded rice fields. Atmospheric Environment 80, 464-471.   DOI
6 Prokopenko, M., F, Boschetti., and A. J. Ryan, 2009: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11-28.   DOI
7 Reichstein, M., P. Ciais, D. Papale, R. Valentini, S. Running, N. Viovy, W. Cramer, A. Granier, J. Ogee, V. Allard, and M. Aubinet, 2007: Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology 13(3), 634-651.   DOI
8 Ricepedia. Retrieved 08 December 2019, from http://ricepedia.org/rice-as-a-crop
9 Miyata, A., R. Leuning, O. T. Denmead, J. Kim, and Y. Harazono, 2000: Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology 102(4), 287-303. doi:Doi 10.1016/S0168-1923(00)00092-7   DOI
10 Yu, G., X. Song, Q. Wang, Y. Liu, D. Guan, J. Yan, X. Sun, L. Zhang, and X. Wen, 2008: Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist 177(4), 927-937.   DOI
11 Kang, M., J. Kim, H.S. Kim, B. Malla Thakuri, and J.-H. Chun, 2014: On the nighttime correction of CO2 flux measured by eddy covariance over temperate forests in complex terrain. Korean Journal of Agricultural and Forest Meteorology 16(3), 233-245.   DOI
12 Miyata, A., T. Iwata, H. Nagai, T. Yamada, H. Yoshikoshi, M. Mano, K. Ono, G. Han, Y. Harazono, and E. Ohtaki, 2005: Seasonal variation of carbon dioxide and methane fluxes at single cropping paddy fields in central and western Japan. Phyton 45(4), 89-97.
13 Kang, M., J. Kim, S. H. Lee, J. Kim, J. H. Chun, and S. Cho, 2018: Changes and improvements of the standardized eddy covariance data processing in KoFlux. Korean Journal of Agricultural and Forest Meteorology 20(1), 5-17.   DOI
14 Van Gorsel, E., N. Delpierre, R. Leuning, A. Black, J. W. Munger, S. Wofsy, M. Aubinet, C. Feigenwinter, J. Beringer, D. Bonal, and B. Chen, 2009: Estimating nocturnal ecosystem from the vertical turbulent flux and change in storage of of CO2. Agricultural and Forest Meteorology 149 (11), 1919-1930.   DOI
15 Papale, D., M. Reichstein, M. Aubinet, E. Canfora, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini, T. Vesala, and D. Yakir, 2006: Towards a standardized processing of net ecosystme exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571-583.   DOI
16 Hwang, Y., Y. Ryu, Y. Huang, J. Kim, H. Iwata, and M. Kang, 2020: Comprehensive assessments of carbon dynamics in an intermittently-irrigated rice paddy. Agricultural and Forest Meteorology 285,107933.
17 Ikawa, H., K. Ono, M. Mano, K. Kobayashi, T. Takimoto, K. Kuwagata, and A. Miyata, 2017: Evapotranspiration in a rice paddy field over 13 crop years. Journal of Agricultural Meteorology 73(3), 109-118.   DOI
18 Indrawati, Y. M., J. Kim, and M. Kang, 2018: Assessment of Ecosystem Productivity and Efficiency using Flux Measurement over Haenam Farmland Site in Korea (HFK). Korean Journal of Agricultural and Forest Meteorology 20(1), 57-72. doi:10.5532/KJAFM.2018.20.1.57   DOI
19 IPCC (Intergovernmental Panel on Climate Change), 2007: Nitrous oxide and carbon dioxide in agriculture; OECD/IPCC/IEA phase II development of IPCC guidelines for natural greenhouse gas inventory methodology, Workshop Report, 4-6 December, 1995, OECD, IPCC, IEA (Geneva), 1997.
20 Kang, M., J. Kim, B. Malla Thakuri, J. Chun, and C. Cho, 2018: New gap-filling and partitioning technique for H2O eddy fluxes measured over forests. Biogeosciences 15, 631-647.   DOI
21 Shindell, D., G. Faluvegi, D. M. Koch, G. A. Schmidt, N. Unger, and S. E. Bauer, 2009: Improved attribution of climate forcing to emissions. Science 326(5953), 716-718.   DOI
22 Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O'mara, C. Rice, B. Scholes, O. Sirotenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, and U. Schneider, S. Towprayoon, 2007: Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture Agriculture, Ecosystems & Environment 118(1), 6-28.   DOI
23 Svirezhev,Y., 2010: Entropy and Entropy Flows the Biosphere. Global Ecology 154.
24 Van Dijk, A., A. F. Moene, and H. A. R. De Bruin, 2004: The principles of surface flux physics: theory, practice and description of the ECPACK library. Meteorology and Air Quality Group. Wageningen University, Wageningen, The Netherlands, 99.
25 Wang, Y., L. Zhou, Q. Jia, and W. Yu, 2017: Water use efficiency of a rice paddy field in Liaohe Delta, Northeast China. Agricultural Water Management 187, 222-231.   DOI
26 Gitelson, A. A., A. Vina, S. B. Verma, D. C. Rundquist, T. J. Arkebauer, G. G. Burba, and A. E. Suyker, 2006: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres 11(D8).
27 Fratini, G., A. Ibrom, N. Arriga, G. Burba, and D. Papale, 2012: Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology 165, 53-63.   DOI
28 Gershenson, C., and N. Fernandez, 2012: Complexity and information: Measuring emergence, selforganization, and homeostasis at multiple scales. Complexity 18(2), 29-44.   DOI
29 Gitelson, A. A., and J. A. Gamon, 2015: The need for a common basis for defining light-use efficiency: Implications for productivity estimation. Remote Sensing of Environment 156, 196-201.   DOI
30 Hong, J. K., H. J. Kwon, J.-H. Lim,Y. H. Byun, J. H. Lee, and J. Kim, 2009: Standardization of KoFlux eddy-covariance data processing. Korean Journal of Agricultural and Forest Meteorology 11(1), 19-26.   DOI
31 Horst, T. W., and D. H. Lenschow, 2009: Attenuation of scalar fluxes measured with spatially-displaced sensors. Boundary Layer Meteorology 130(2), 275-300.   DOI
32 Hossen, M. S., M. Mano, A. Miyata, M. A. Baten, and T. Hiyama, 2011: Seasonality of ecosystem respiration in a double-cropping paddy field in Bangladesh. Biogeosciences Discussions 8, 8693-8721.   DOI
33 Kim, J., M. Kang, T. Oki, E. W. Park, K. Ichii, Y. M. Indrawati, S. Cho, J. Moon, W. C. Yoo, J. Rhee, H. Rhee, K. Njau, and S. Ahn, 2018: Rural Systems Visioneering: Paradigm Shift from Flux Measurement to Sustainability Science. Korean Journal of Agricultural and Forest Meteorology 20(1), 101-116. doi:10.5532/KJAFM.2018.20.1.101   DOI
34 Webb, E. K., G. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of Royal Meteorological Society 106, 85-100.   DOI
35 Yang, H., Y. M. Indrawati, A. E. Suyker, J. Lee, K.-d. Lee, and J. Kim, 2020: Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA. Korean Journal of Agricultural and Forest Meteorology 22(1), 26-46. doi:10.5532/KJAFM.2020.22.1.26   DOI
36 Zhang, Y., M. Xu, H. Chen, and J. Adams, 2009: Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Global Ecology and Biogeography 18(3), 280-290.   DOI
37 Fernandez, N., C. Maldonado, and C. Gershenson, 2014: Information measures of complexity, emergence, self-organization, homeostasis, and autopoiesis. In Guided self-organization: Inception, Springer, 19-51.
38 Zurlini, G., I. Petrosillo, K. B. Jones, and N. Zaccarelli, 2013: Highlighting order and disorder in social-ecological landscapes to foster adaptive capacity and sustainability. Landscape Ecology 28(6), 1161-1173.   DOI
39 Aubinet, M., B. Chermanne, M. Vandenhaute, B. Longdoz, M. Yernaux, and E. Laitat, 2001: Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology 108(4), 293-315.   DOI
40 Mauder, M. and T. Foken, 2011: Documentation and Instruction Manual of the Eddy-covariance Software Package TK3. Univ., Abt. Mikrometeorologie, 46:60.
41 Kim, Y., M. S. A. Talucder, M. Kang, K.-M. Shim, N. Kang, and J. Kim, 2016: Interannual variations in methane emission from an irrigated rice paddy caused by rainfalls during the aeration period. Agriculture, Ecosystems & Environment 223, 67-75. doi:10.1016/j.agee.2016.02.032   DOI
42 Knox, S. H., J. H. Matthes, C. Sturtevant, P. Y. Oikawa, J. Verfaillie, and D. Baldocchi, 2016: Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. Journal of Geophysical Research: Biogeosciences 121, doi:10.1002/2015JG003247.   DOI
43 LI-COR Inc. 2014: Eddypro-eddy covarience software: Version 5.2.1 user's guide and reference.
44 Lin, H., M. Cao, P. C. Stoy, and Y. Zhang, 2009: Assessing self-organization of plant communities a thermodynamic approach. Ecological Modelling 220(6), 784-790.   DOI
45 Lin, H., M. Cao, and Y Zhang, 2011: Self-organization of tropical seasonal rain forest in southwest China. Ecological Modelling 222(15), 2812-2816.   DOI
46 McMillen, R. T., 1988: An eddy correlation technique with extended applicability to non-simple terrain. Boundary Layer Meteorology 43(3), 231-245.   DOI
47 Choi, S.-W., J. Kim, M. Kang, S. H. Lee, N. Kang, and K.-M. Shim, 2018: Estimation and Mapping of Methane Emissions from Rice Paddies in Korea: Analysis of Regional Differences and Characteristics. Korean Journal of Agricultural and Forest Meteorology 20(1), 88-100. (in Korean with English abstract).   DOI
48 Alberto, M. C. R., T. Hirano, A. Miyata, R. Wassmann, A. Kumar, A. Padre, and M. Amante 2012: Influence of climate variability on seasonal and interannual variations of ecosystem CO2 exchange in flooded and non-flooded rice fields in the Philippines. Field Crops Research 134, 80-94.   DOI
49 Brunsell, N. A., S. J. Schymanski, and A. Kleidon, 2011: Quantifying the thermodynamic budget of the land surface: is this useful? Earth System Dynamics 2(1), 87-103.   DOI
50 Burba, G., 2013: Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. Li-Cor Biosciences, Lincoln.
51 Cochran, F.V., N. A. Brunsell, and A. E. Suyker, 2016: A thermodynamic approach for agroecosystem sustainability. Ecological Indicators 67, 204-214.   DOI
52 Alberto, M. C. R., R. Wassmann, T. Hirano, A. Miyata, R. Hatano, A. Kumar, A. Padre, and M. Amant, 2011: Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the philippines. Agricultural Water Management 98(9), 1417-1430.   DOI
53 Alberto, M. C. R., R. Wassmann, T. Hirano, A. Miyata, A. Kumar, A. Padre, and M. Amant, 2009: CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the philippines. Agricultural and Forest Meteorology 149(10), 1737-1750.   DOI
54 Van Groenigen, K. J., C. Van Kessel, and B. A. Hungate, 2013: Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nature Climate Change 3(3), 288-291.   DOI
55 Mosier, A. R., C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. Van Cleemput, 1998: Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. OECD/IPCC/IEA phase II development of IPCC guideslines for national greenhouse gas inventory methodology. Nutrient Cycling in Agroecosystems 52, 225-248.   DOI
56 Odum, E., 1969: The strategy of ecosystem development. Science (New York, NY), 164(3877), 262-270.   DOI
57 Santamaria-Bonfil,.G.,.C..Gershenson,.and.N..Fernandez, 2017: A package for measuring emergence, self-organization, and complexity based on shannon entropy. Frontiers in Robotics and AI 4(10), 1-12.
58 Rosenstock, T. S., C. Lamanna, S. Chesterman, P. Bell, A. Arslan, M. Richards, J. Rioux, A. O. Akinleye, C. Champalle, Z. Cheng, C. CornerDolloff, J. Dohn, W. English, A. S. Eyrich, E. H. Girvetz, A. Kerr, M. Lizarazo, A. Madalinska, S. McFatridge, K. S. Morris, N. Namoi, N. Poultouchidou, M. Ravina da Silva, S. Rayess, H. Strom, K. L. Tully, and W. Zhou, 2016: The scientific basis of climate-smart agriculture: A systematic review protocol. CCAFS Working Paper no. 138. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
59 Shannon, C. E., 1948: A Mathematical Theory of Communication. The Bell System Technical Journal 27,379-423, 623-656.   DOI
60 Sun, H., S. Zhou, Z. Fu, G. Chen, G. Zou, and X. Song, 2016: A two-year field measurement of methane and nitrous oxide fluxes from rice paddies under contrasting climate conditions. Scientific Reports 6, 28255. doi:10.1038/srep28255   DOI
61 Monteith, J. L., and C. Moss, 1977: Climate and the efficiency of crop production in Britain [and discussion]. Philosophical Transactions of the Royal Society of London B: Biological Sciences 281(980), 277-294.   DOI
62 Hossen, M. S., M. Mano, A. Miyata, A. Baten, and T. Hiyama, 2012: Surface energy partitioning and evapotranspiration over a double-cropping paddy field in bangladesh. Hydrological Processes 26, 1311-1320.   DOI
63 Lipper, L., P. Caron, F. Kossam, R. Sessa, P. Thornton, A. Cattaneo, W. Mann, R. Shula, B. M. Campbell, D. Garrity, N. McCarthy, A. Tibu, T. Baedeker, K. Henry, A. Meybeck, R. Hottle, and E. F. Torquebiau, 2014: Climate-smart agriculture for food security. Nature Climate Change 4(12), 1068-1072.   DOI
64 Lopez-Ruiz, R., H. L. Mancini, and X. Calbet, 1995: A statistical measure of complexity. Physics Letters A 209(5-6), 321-326.   DOI
65 Meijide, A., G. Manca, I. Goded, V. Magliulo, P. di Tommasi, G. Seufert, and A. Cescatti, 2011: Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences 8, 3809-3821.   DOI
66 Min, S.-H., K.-M. Shim, Y.-S. Kim, M.-P. Jung, S.-C. Kim, K.-H. So, 2013: Seasonal Variation of Carbon Dioxide and Energy Fluxes During the Rice Cropping Season at Rice-barley Double Cropping Paddy Field of Gimje. Korean Journal of Agricultural and Forest Meteorology 15(4), 273-281. doi:10.5532/kjafm.2013.15.4.273   DOI
67 Neufeldt, H., M. Jahn, B. M. Campbell, J. R. Beddington, F. DeClerck, A. De Pinto, J. Gulledge, J. Hellin, M. Herrero, A. Jarvis, and D. LeZaks, 2013: Beyond climate-smart agriculture: toward safe operating spaces for global food systems. Agriculture & Food Security 2(1), 12.   DOI
68 Chun, J. A., K.-M. Shim, S. H. Min, and Q. Wang, 2015: Methane mitigation for flooded rice paddy systems in South Korea using a process-based model. Paddy and Water Environment DOI 10.1007/s10333-015-0484-0.   DOI
69 Nielsen, S. and S. Jorgensen, 2013: Goal functions, orientors and indicators (GoFOrtIt's) in ecology. Application and functional aspects-Strengths and weaknesses. Ecological Indicators 28, 31-47.   DOI
70 Kang, N., J. Yun, M. S. A. Talucder, M. Moon, M. Kang, K.-M. Shim, and J. Kim, 2015: Corrections on CH4 fluxes measured in a rice paddy by Eddy covariance method with an open-path wavelength modulation spectroscopy. Korean Journal of Agricultural and Forest Meteorology 17 (1), 15-24.   DOI