• Title/Summary/Keyword: measurement matrix design

Search Result 98, Processing Time 0.023 seconds

Volumetric Error Identification for NC Machine Tools Using the Reference Artifact (기준물을 이용한 NC 공작기계의 체적오차 규명)

  • Kim, Gyeong-Don;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2899-2908
    • /
    • 2000
  • Methodology of volumetric error identification is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geometric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. The proposed method can speed up and simplify volumetric error identification processes.

Analysis System for Practical Dynamic Load with Hybrid Method under Random Frequency Vibration (불규칙 가진시 하이브리드기법을 이용한 실동하중 해석시스템)

  • Song, Joon-Hyuk;Yang, Sung-Mo;Kang, Hee-Yong;Yu, Hyo-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.33-38
    • /
    • 2008
  • Most structures of vehicle are composed of many substructures connected to one another by various types of mechanical joints. In vehicle engineering, it is important to study these jointed structures under random frequency vibration for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions in a jointed structure because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the hybrid method of practical dynamic load determination is developed by the combination of the principal stresses from F. E. Analysis and test of a jointed structure. Least square pseudo inverse matrix is adopted to obtain an inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these errors. Finally, to verify the proposed system, a heavy-duty bus is analyzed. This measurement and prediction technology can be extended to the different jointed structures.

The Study on Correlation and Transformation Matrix Development in terms of Loading Histories of Body and Chassis for CTBA Suspension (CTBA 샤시 부품과 마운팅부 차체 입력 하중과의 상관성 연구 및 변환행렬식 개발)

  • Ha, Dong-Hyun;Park, Soon-Cheol;Jung, Won-Wook
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.79-90
    • /
    • 2012
  • The torsion beam type of rear suspension has been adopted by most manufactures of small to medium front wheel drive passenger cars. Previous studies analyzed only the load characteristics of CTBA(the coupled torsion beam axle)'s components. This paper analyzed the results of measurement after measuring loads and displacements, angles when a car equipped with the coupled torsion beam axle is driving in various roads. The most important durability factors for CTBA part are the force and direction of rear CTBA trailing arm. If there are design changes, it was difficult to make a sensor and install each time for measuring the trailing arm forces. After analyzing the loading histories between body and chassis, we developed the transformation matrix that can be converted to mutual force. This paper also deals with the analysis of the force behavior through the analysis of the influence and correlation between the body and chassis parts of cars.

A Markov Chain Representation of Statistical Process Monitoring Procedure under an ARIMA(0,1,1) Model (ARIMA(0,1,1)모형에서 통계적 공정탐색절차의 MARKOV연쇄 표현)

  • 박창순
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.71-85
    • /
    • 2003
  • In the economic design of the process control procedure, where quality is measured at certain time intervals, its properties are difficult to derive due to the discreteness of the measurement intervals. In this paper a Markov chain representation of the process monitoring procedure is developed and used to derive its properties when the process follows an ARIMA(0,1,1) model, which is designed to describe the effect of the noise and the special cause in the process cycle. The properties of the Markov chain depend on the transition matrix, which is determined by the control procedure and the process distribution. The derived representation of the Markov chain can be adapted to most different types of control procedures and different kinds of process distributions by obtaining the corresponding transition matrix.

Dynamic Stress Analysis of joint by Practical Dynamic Load History (실하중 이력에 의한 조인트의 동적강도해석)

  • ;;;Akira Simamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.118-123
    • /
    • 2001
  • Most structures of automobile are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic farces for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the procedure of practical dynamic load determination is developed by the combination of the principal stresses of F.E. analysis and experiment. Inverse problem and least square pseudo inverse matrix are adopted to obtain an inverse matrix of analyzed stresses matrix. Pseudo-Practical dynamic load was calculated for Lab. Test of sub-structure. GUI program(PLODAS) was developed for whole of above procedure. This proposed method could be extended to any geometric shape of structure.

  • PDF

A Calibration and Uncertainty Analysis on the Load Monitoring System for a Low Speed Shaft and Rotor Blade of a Wind Turbine (풍력발전기 주축 및 날개 부하 측정시스템의 보정 및 불확실성 해석)

  • Park Moo-Yeol;Yoo Neung-Soo;Nam Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.560-567
    • /
    • 2006
  • The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.

Descriptor and Non-Descriptor Controllers in Mixed $H_2/H_{\infty}$ Control of Descriptor Systems

  • Choe, Yeon-Wook;Ahn, Young-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.892-897
    • /
    • 2003
  • This paper considers the design of mixed $H_2/\;H_{\infty}$ controllers for linear time-invariant descriptor systems. Firstly, an $H_{\infty}$ and $H_2$ synthesis problem for a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, the existence of a mixed $H_2/\;H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_{\infty}$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables. In addition, we show the procedure by which a obtained descriptor controller can be transformed to a non-descriptor one.

  • PDF

Design of multimode E-plane corugated monopulse horn for linear phased array feeder (선형 위상배열 급전기에서 저부엽 모노펄스 패턴을 얻기 위한 다중모드 E-면 주름혼의 설계)

  • 김찬홍;이용희;홍동희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.52-59
    • /
    • 1996
  • This paper presents a monopulse feed structure with low sidelobe monopulse pattern, which consists of a E-plane corrugated horn and a unfiorm pick-up aperture power divider. Tfhe design methods and epxerimental resutls of the E-plane corrugated feeder are described. Modified hybrid mode analysis and GSM (generalized scattering matrix) methods are introduced to design the E-plane corrugated feed horns. The 24-port corrugated feeder is designed using modified hybrid mode analysis initially and verified using GSM methods. Measurement results show that this feeder has low return loss and sidelobe level at sum and difference channel, respectively.

  • PDF

A Bayesian Approach to Linear Calibration Design Problem

  • Kim, Sung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.105-122
    • /
    • 1995
  • Based on linear models, the inference about the true measurement x$_{f}$ and the optimal designs x (nx1) for the calibration experiments are considered via Baysian statistical decision analysis. The posterior distribution of x$_{f}$ given the observation y$_{f}$ (qxl) and the calibration experiment is obtained with normal priors for x$_{f}$ and for themodel parameters (.alpha., .betha.). This posterior distribution is not in the form of any known distributions, which leads to the use of a numerical integration or an approximation for the calculation of the overall expected loss. The general structure of the expected loss function is characterized in the form of a conjecture. A near-optimal design is obtained through the approximation nof the conditional covariance matrix of the joint distribution of (x$_{f}$ , y$_{f}$ $^{T}$ )$^{T}$ . Numerical results for the univariate case are given to demonstrate the conjecture and to evaluate the approximation.n.

  • PDF

Why Gabor Frames? Two Fundamental Measures of Coherence and Their Role in Model Selection

  • Bajwa, Waheed U.;Calderbank, Robert;Jafarpour, Sina
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.289-307
    • /
    • 2010
  • The problem of model selection arises in a number of contexts, such as subset selection in linear regression, estimation of structures in graphical models, and signal denoising. This paper studies non-asymptotic model selection for the general case of arbitrary (random or deterministic) design matrices and arbitrary nonzero entries of the signal. In this regard, it generalizes the notion of incoherence in the existing literature on model selection and introduces two fundamental measures of coherence-termed as the worst-case coherence and the average coherence-among the columns of a design matrix. It utilizes these two measures of coherence to provide an in-depth analysis of a simple, model-order agnostic one-step thresholding (OST) algorithm for model selection and proves that OST is feasible for exact as well as partial model selection as long as the design matrix obeys an easily verifiable property, which is termed as the coherence property. One of the key insights offered by the ensuing analysis in this regard is that OST can successfully carry out model selection even when methods based on convex optimization such as the lasso fail due to the rank deficiency of the submatrices of the design matrix. In addition, the paper establishes that if the design matrix has reasonably small worst-case and average coherence then OST performs near-optimally when either (i) the energy of any nonzero entry of the signal is close to the average signal energy per nonzero entry or (ii) the signal-to-noise ratio in the measurement system is not too high. Finally, two other key contributions of the paper are that (i) it provides bounds on the average coherence of Gaussian matrices and Gabor frames, and (ii) it extends the results on model selection using OST to low-complexity, model-order agnostic recovery of sparse signals with arbitrary nonzero entries. In particular, this part of the analysis in the paper implies that an Alltop Gabor frame together with OST can successfully carry out model selection and recovery of sparse signals irrespective of the phases of the nonzero entries even if the number of nonzero entries scales almost linearly with the number of rows of the Alltop Gabor frame.