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A Bayesian Approach to
Linear Calibration Design Problem*

Sung Chul Kim**

Abstract

Based on linear models, the inference about the true measurement x; and the optimal designs x
(nxl) for the calibration experiment are considered via Bayesian statistical decision analysis. The
posterior distribution of x, given the observation yfgxl) and the calibration experiment is
obtained with normal priors for x, and for the model parameters (x, f). This posterior distri-
bution is not in the form of any known distributions, which leads to the use of a numerical inte-
gration or an approximation for the calculation of “he overall expected loss. The general structure
of the expected loss function is characterized in the form of a conjecture. A near-optimal design is
obtained through the approximation of the conditional covariance matrix of the joint distribution
of (x, v,")7. Numerical results for the univariate case are given to demonstrate the conjecture and
to evaluate the approximation.
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1.INTRODUCTION

A measuring instrument must be calibrated for accurate inferences based on the relation-
ship between two quantities. The calibration problem consists of two experiments: the fu-
ture measuring experiment and the calibration experiment. The inference problem is to

make inferences about an unknown true value x, from a random observation, g-vector Ve

* This article is published with the support from 1994 Soongsil University Research Fund.
**  Department of Statistics, Soongsil University, Seoul 156-743, Korea
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The design problem is to find an optimal calibration experimental design vector x (sux1), which
minimizes some overall loss function.

Hoadley {10] considers univariate (g=1) caiibration and points out some difficulties with
the maximum likelihood estimator for x,. He justifies the inverse estimator as a posterior

5. generalized Hoadley’s results with a multivariate setup.

mean for x, with a ¢ prior. Brown [
Hunter and Lamboy {11! obtained a posterior distribution of x, which has infinite variance.
They discussed a controversy concerning infinite variances and inverse regression. Optimal de-
sign for linear regression model is discussed i1. Chaloner _7{, in which the Bayesian optimal
design for estimating linear combination of the regression parameters and a geometric in-
terpretation of an optimal one-point design wlich parallels Elfving [9] are given. Brooks [4
discusses the problem of designing an experiment to help control the dependent variable at a
prechosen value in a linear regression model.

Optimal calibration designs are studied in Burlow, Mensing and Smiriga [1] [2], where they
use Bayesian approach with univariate formulation. Using bivariate normal prior for « and f,
Barlow, Mensing and Smiriga [2. demonstruzted that the expected loss function can be
calculated by a computer program using three nested subroutines for each design. Buonaccorsi
[6] used the classical estimator to minimize asvmptotic variance.

The two experiments can be expressed as following linear model:

Y =14+ x—x1)f+E (1.1)
Y, = at{x,—x)f+e (1.2)

where x, is a scalar, 2, ff, ¥, and ¢ are g-veciors, 1 is an n-vector of I's, and Y and E are
{nxq) matrices. It is assumed that ¢ given x and is N (0, T'). It is also assumed that the
errors are independent from observation to obsirvation, i. e., & is independent of & given [ for
i#j. x, is the prior mean of x, which is the choice for the center of the model. The model
with a single future experiment is sufficiently general since the multiple future experiments
can be reduced to our model when the error viriance T is known. The model with scalar inde-
pendent variable is preferred in the sense that it is much more tractable, especially in the de-
sign problem. Another important consideration for scalar x, is that if the number of responsc
variables is less than the number of independent variables then x, cannot be completely deter-
mined even when « and f are known (Brown [5]).

In addition to the independent normal error assumption, we assume that x, is independent
of (x, f, %, Y), and that y, is independent of (x, Y) given (2, /). In other words, the future
true value is independent of the parameters and the calibration experiment a priori, and the

future observation is independent of the calibration experiment given the parameters. x, is
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independent of {(x, Y) since the calibration experiment provides no information on x,. The error co-
variance matrix, I, is assumed to be known. If I is unknown, we can use a vague prior or a natu-
ral conjugate prior for £he parameters of a normal distribution as in DeGroot [8]. Furthermore, we
assume that the loss function £(d.x,) depends only on x, and d—the decision regarding x; after ob-
serving ¥. For example, we do not consider the ccst of the experiment in the loss function. It is
also assumed that the set Q of feasible experimenta. designs is bounded.

The data from the calibration experiment consist of (x, y,), i=1,2,-m, where x = (x,,x,)" are
specified in advance. Based on our prior plx,) and the model (1. 1) and (1. 2), our problem is to
determine the experimental design x subject to sonw feasibility constraints so as to minimize over-
all expected loss. The posterior distribution of the parameters, p(s, Six,Y), can be obtained by

Bayes” Theorem, and the predictive distribution of v, can be calculated as
plylx, YY) =[iplyla B x) pla. plaY)dadp. (1. 3)

After the posterior distribution of x, given {y,%Y,x) has been obtained, the decision @ should be

made to minimize
E, ‘r‘\“[ Cldx) v, Y.x].

[f the loss function is the squared error loss, (d--x,)?, the decision d is the estimate of x, after
observing the future y. The best estimator is the posterior mean d* = Elx; v,Y,x), and the pos-
terior risk after observing y, is the posterior variarce Var(x|y,Y.x).

At the time of the decision regarding the experiraental design, we do not know y, or the test re-

sult Y. Therefore, the overall expected loss R(x) is the preposterior risk
Ri(x) EE\,\E\‘ vo Min Eo oo €(dx) ity YVix! (1.4)

7

We must minimize R(x) with respect to x = (x, x,)7. With the squared error loss, R(x)

becomes
Rix) =E\ E ., Varlxlv,Yx) .

In Section 2, we discuss upper and lower bounds on the overall risk function. Thev are based on
the value of sample information and the value of porfect information, respectively. In Section 3, the
general structure of R{x) is characterized based or the posterior distributions of (x, ) and of X
An optimal solution procedure is suggested in the {orm of a conjecture for the structure of optimal
designs. In Section 4, a simple approximation is iitroduced by replacing the covariance matrix of
(x, v/ given (a, ) by some constant matrix to abtain a near-optimal design. Numerical examples

illustrating the conjecture and the approximation arz given in Section 5.
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2. BOUNDS ON THE RISK FUNCTION

Consider a series of calibration experiments and a future experiment. The quantity
E M E,  [¢dx)ly; —R(x) 2 1)

is the expected value of sample information (EVSI, {13]) gained by performing the calibration

experiment. The quantity
Min E, [ ¢(d.x)]—Rlx) (2. 2)

is the EVSI gained by performing both experiments. Suppose, on the other hand, that we are
given the true value of x, at the time of decisions. Then the expected value of perfect infor-

mation (EVPI, [13]) about x; is
R(x)—E,/ Agin “e(dx)] (2. 3)
If we can have the true value of («, ) at the time of decision then the EVPI about (2, f) is

Rx)-E,E, ., A/{z’n E, [eda)] vy, 2p] (2. 4)

It can be shown that the above EVSI's and FVPI's - the quantities (2. 1) through (2. 4) -

are all nonnegative, that is,

LB, < LB, < Rx) < UB, < UB,. (2.

Do
(@3]
~

where
R(x) = Ey, B, +, Min E,, . [2(dx)y, Yx],
UB, = E, Min E,_, [ 0{dx)ly,,
UB, = Min E,[ 0(d.x))]
LB, = E, Aldin [C(d.x)], and
LB, = E, E,, Min E,, , [ €(dx)ly, 2.

Intuitively, the above inequalities states that -he more information we have at the time of
decision, the smaller the final expected loss will be. We can use either UB. or UB. as an up-
per bound for R(x). LB, is the expected loss when we have perfect information about xs, and
LB, is the expected loss if we have perfect iniormation about (z, ) before the future exper-

iment. If we let
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LB.?: EY‘x E:,ﬂi\'.x Eyrx.[i A{din Exfl_\',‘ af LQ(dJLf)ny\ %z, ﬁja (2‘6)

then LB, is the expected loss if we have perfect inlormation about (a, B) after the calibration ex-
periment but before the future experiment. Kim [12] has shown that LB, = LB, and this fact
verifies that the purpose of the calibration experiment is to learn about (z, f). Any of these LB's
can be used as a lower blund for R(x) depending on the situation. Upper and lower bounds are use-

ful in checking computer calculation in numerical evamples. Details of the above argument can be

found in Kim [12.

When Q(d,x,)=(d —x,, the above inequalities (2. 5) become

LEMMA 21. If the range of possible decisions. d. does not depend on x or Y and if Lid.x)=

(d—x)%, then we have

0 < Eu EvwVarixly, af)
Evie Eyvs Varlxly, Y,x) =R(x)
E. Var(xly,)

Var(x,).

AN

IA

If, in addition, x, is Nix, ¢.%) a priori, then the sccond term on the first line becomes
E[(/or+p" T p, (2.7)

which requires g-muliiple integration to evaluate. The fourth term (third line) can be calculated in
g+1 integrals if («', ') is normal. In this case, it is easy to see, without any integration, that yr
given x, is mormal. And p(y.), p(x,ly;) and Varxly,' can be computed in one integration. It takes

g-multiple integration to calculate
E, Varlxly)= [ py) Varlx,ly)dy.

It turns out that R(x) needs (2¢+1)-integration tc evaluate, so the computational time for these
bounds, N* (or N“"'), is much less than N**7 for Rix), where N is the number of grid points in a
numerical integration. A little less favorable lower bound than (2.7) can be found easily with

Jensen’s inequality so that for univariate case,
R(x)=[1/ 62+ (b2+a2) /62] 7, (2.8)

where b is the prior mean of fi, ¢,% is the prior variane of f, and ¢2 is the variance of the error &
It follows from (2. 5) that the expected loss function can only decrease if we perform additional

calibration experiments. This may not be true if €( ,-) were to depend on (x,Y).
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LEMMA 2.2. If the range of possible decisions. d. does not depend on x or Y. we have

Rix1, %) 2R ix1, - XnXo- 1),
where the first n coordinates are the same on Hoth sides of inequality.

3. STRUCTURE OF THE OPTIMAL EXPERIMENTAL
DESIGN

3.1. Likelihood and Posterior Distributions

The likelihood for (x,8) given the data is

L{ofldata, x,) € exp [—1/2tr TP {Y 10 —Gx—x )" )7 [Y—-1oa' —(x—x 1) ]]. (3.1)

The likelihood depends on #, _‘i(x,-m),

S(x-x)% Y'1, and Y'(x—x,1). Assume a priori
=1

E(z) = a, E(p) b. Letting U =Y—1a"—(x—-x,1)b’, we can see that the posterior distri-

bution of (z, ) depends on the data only through =, ;(x,*x[,), ;(xrx(,)z, z,, and z, where z

= U"l, and z; = U'(x—=x,1) are the results of the calibration experiment. It follows that
7| apx~N, (u, nl),

z, | upx~N, [, Sl (i —x0) 20 ],

and the covariance matrix

COV(ZH Zg‘d,ﬁ,x):E[r(Zl 31)[21 (xl_.x“) 817”]:;1 (xzivx[r) r»

where

mzn(a—a)"i-i‘ (x;—x)(f—Db),

and

=% Gi—x) (x=a)+% (o—x)*(B=b).

Jointly, [?J given o, and x is

N [ H;J nl S{—x)T
2q . ¥
Bl Sx—x)T (s —x)2T



F20% 3% A Bayesian Approach to Linear Calibration Design Problem 111

n n

which depends on x only through #, Y(x,—x,). ©

—_—
=t -

(x;~x,)%. Lemma 3.1 summarizes the above result,

which is a multivariate 'version of Barlow, Mensing and Smiriga [1].

LEMMA 3.1. For all loss functions Ld.x) of d and x, and all priors on (a. B) and x,. R(x)

H n
depends on x only through n. (x —x:)=3(x,—x,)/n and s.>=3 (x;—x,P/n.
=1 -1

Suppose a priori that (a, $) is independent of ¢ With a normal prior (3. 2) for (o, f)

% ', a D. 0
[ﬂ} ~ N [b]'[ODb] , (32)

where D, and D, are diagonal matrices, the posterior distribution of (a,f) given x and Y is

1

o s Su S N
(e o171
B Sy S»

i (3.3)
where
SM: Da’1+nlﬁ’1
Spm= D, 1+i1(x,-vxu)zl" :
Si=8= :l(x,‘—xu)rﬂ
and
. 1 . )
H: = a + C G — [;](xi_xu”zl C oz — [Zl(xi—xn),lzl L
w =b +{C C — [Zl(x,-—xn)]zl ! {Cg z — [.\;l(xi_xu)jZl ,
) J
where

C = zl(xi—xu)ZH-l”Db g

C, = nl+ID,"

As expected with a normal likelihood model, the posterior covariance matrix, S7', does not depend

on the test results Y —here z; and z.

Recall the future experiment model

vi = a + (x—x)f+ e (1.2)

oL
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Since x and f# are jointly normal given (x,Y,x), it follows that x+(x,,—-xh)[f=A{;
Y,x), is normal with mean A [-Z’] = u -+ (x—x)y and covariance matrix AS 'AT,

LA

] given (x;,

where A=[I (x,—x,)1]. Therefore, the predictive distribution of y; is

yf‘xﬁny"’Nq [ wt (e —x0) g, AS 1AT‘H']., (3.4)

since (a, ) is independent of & given (x,Y,x). For the prior distribution of x, we suppose

x~N(x, 6,%). Then by Bayes’ Theorem, we have the posterior distribution of x,

plalyaY,x) a ply 2. Y. x0p(x))
a |27(AS AT+ T'|7V* expt- /2w —x)2 a2y — = (= x|
(ASTA™HD) * [yi—p—(xy-2) )} (3. 5)

As A = [I (x,~x)1] depends on x,. this distr:bution cannot be a normal distribution. This
non-normal posterior distribution of x;, makes the problem more difficult to analyze, and we

need a numerical calculation for either the decision regarding x, or the calibration design x.
3.2. Symmetry of R(x)

The calibration experiment should be designec so that the expected value of the loss func-

tion is minimized. A design is an #-vector x, hut we can reduce the dimension of the design
J— " n. .
to three, namely »#. x —x, = Y (x;~x,)n and 5°= Y (x,—x.)%% by using Lemma 3.1. If our
il -1

design space Q in terms of x is, R", this transformation of the design space gives a constraint

on the new design space Z,, that is, since

Y =%\ n=0,

i=1

it follows that
il(xlwxu — Xy _f)z'/n: Sl().‘ "'xw)zr"’n_(x“ - X \)220,
and hence
X —x | <s..
Notice that this transformation is valid only fior #>2 because if # = 1 then (¥ —x.)® is
identical to s,%.

Since ¥ —x. and s, are symmetric functions of an experimental design x, it follows that,
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for fixed s, any permutation of coordinates of an experimental design solution is also a solution
(unless violates the feasibility constraints). From here on, we will use the design x to represent
either x = {x:1,, x,,)lrior equivalently x = (s, x —x,, s.Y, and make no distinction between them.

Consider an #n-vector x* which is optimal when restricted to w-vectors, and an (n-+1)-vector w*

which is optimal to (n+1)-vectors. Then using Lemma 2.2, we can prove the following:

THEOREM 3.2. If the feasible regions of x. ave identical for each i, i=12.-n, then the optimal

expected loss R.x,*) is decreasing in n.

Using Theorem 3.2, we can find the optimal exper:mental design x* in a two dimensional search
over the feasible region Z. We would choose »n as lirge as possible and search for optimal (% —x.,

$:) that minimizes

n

R(}c) = E\"x E},w‘x’,x M%n E‘r“ VpYx LQ(d,X;)inY,XJ

In geneal, it is exceedingly difficult to calcult to caleuate R(x) even for one particular experimen-

tal design x. If[“} is N&,[ [aJ [D 0 H % is Nlx,. 003). and €(d.x)=(d-x)*. —which will
I b 0 Dj

be assumed hereafter, —then the expected loss is
R(x)=Evi« E. vs {Var(x,»ly,.Y,x’f. (3.6)

with optimal decision regarding x;

Ay, Y x)=E[v|ysY.x].

Let w; = y;—u. Then the posterior distribution of xn (3. 5), can be rewritten as
Py Yx) o i2n(AS AT T exp 1= 1/20 Gy xi)on + [wr— Gy —x0 )y )T

(AS AT+ Twe—(—20 i 1 10

Since the posterior variance-covariance matrix of [;1, S™', does not depend on the test result Y, it
follows that w, and p; are sufficient for x; with re.pect to (y,Y), i.e., x/ is independent of {(ysY)

given (w;, y;x). Therefore, the posterior distribution of x/ is
PxsivaYx)=plas wy Y,x),
and hence R(x) can be expressed in terms of w; and u as

R(x)=E, Ev o [Varlx)w, pnx]. (3.7)

It follows that
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R(x)=E,« Ecus Evivps (22 1wy px) — Eu o Ewox [Es, v (21w %) 2.

Since x, is independent of w; and y, we can explicitly evaluate the first term so that

[z ol ptwr| 27, psxddxr 2 dwd, (38)

= 2 2§ .
R(x) X +a, ‘ \ P(lul\x) [t ple)p(w,fIxf, y,:.x)dxf]

We can see from (3.8) that (2¢+1) nested intugrals are necessary to calculate R(x) for one
design x.

It can be shown that the distribution of p, :nven x and thal of w: given (x;u.x) are nor-
mal, so that R(x) can be calculated by the densities of x, w; and g, This leads to the im-
portant result that R(x) = R x —x., s,) is symmetric in ¥ —x, for fixed # and s,* (see
Kim [12] and Barlow, Mensing and Smiriga [2 ). This result further reduces our design space
so that we only have to examine R(x) in the region of the intersection of 0<x —x,<s, and

any given constraints for fixed n.
3.3. Optimal Design Proposed

Suppose we are uncertain about both x and . For, say, Design (I) such that x, =x.=--

X,=x,. the likelihood (3. 1) becomes
Lizpldata) » exp {—1/2 trT" mla—alx—al —2(x—a)l"U’}.

The likelihood does not involve f, which means that with Design (I), the calibration exper-
iment provides no information about f. Intuit.vely, if f is unknown, Design (I) is a local
maximum for R(x) since any design with x, near x, will provide information about fi and
hence reduce the final expected loss.

Consider Design (1I), x —x, = 0, where x, is the prior mean of x. In this case, the cali-
bration experiment reflects the prior belief on x, the future x-values. Clearly, Design (II) is
better than the design with x #x, because of the reflection of the prior for x. For this argu-
ment, only the prior mean needs to be specificd. Technically, Design (1) is a special case of

(I1), and the reason why (I) is bad is that (I) has no variation in the design, I.e,

il(xz—x“ )2 =0.

One-point design, Design (III), is the one that is either x —x, = s, or x —x, = —S.

Elfving [9] and Chaloner [7; showed that in a linear regression framework, the one-point de-
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=0 o=
a=1 0. =2
b=1 apy=0.1
{a) n=5 o=1
w=0 =1
a=1 .=1
b=1 o,=1.2
(a) n=5 o=1
x%=0 o0,=1
a=1 o,=0.1
b=1 o, =2

Figure 3.1 A three dimensional plot of R(x)
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k=T

sign is optimal for estimating the linear combination of the coefficient fi. Their linear models
for which one-point designs are optimal corresjoond to ours with the case when x is known.
When both « and f# are unknown, however, the one-point design is no longer optimal as we
can see from Figure 3. 1. Figure 3. 1 illustrates the intuition argued above, where the typical

plots for the univariate case (¢g=1) using a numerical calculation are shown.

Table 3.1 Calculated values for Figure 3.1

Each cell showing R(x) and R'(x) : #=5, 6=1, x,=0, 0.=1, a=1, b=1

(a) 6,=2, ¢,=0.1, Lower boun!=0.497512, EV(x)=0.554507
Sy

x —x 0 0.5 1 2 3 4
0 0.546989 (.546925 0.546919 0.546904 0.546873 0.546849
0.543478 0.543478 0.543478 0.543478 0.54 )416 0.543478
0.5 0.547393 0.547370 0.547293 0.547199 0.547110
0.543950) 0.5439: 3 0.543876 (0.543807 0.543742
1 (0.H487¢8 0.548519 0.548205 0.547914
0.545388 0.545113 (1.544822 0.544554
2 0.554207 0.552745 0.551454
0.550847 0.549403 (.548123
3 () 562813 0.558813

).559543 0.555556
4 0.674002
0.570866
(b) a,=1, 0,=1.2, Lower bound:==0.290698, EV(wx )=0.528227
Sy

X —x, 0 0.5 1 2 3 4
0 0.735003 0.615367 0.5577¢(C 0.534188 0.529094 0.527244
0.538462 0.538462 0.5384t'2 0.538462 0.538462 0.538462
0.5 0.707189 0.56804% 0.535755 0.529702 0.527567
0.576087 0.54627 5 0.540336 0.539288 (.538925
1 0.65622 0.541469 0.531688 0.528587

0.6184+7 0.547242 0.541996 0.540: %b

2 0.620941 0.543306 0.53355
0.649899 0.557984 0. )-1752’7
3 0.614979 0.547321
0.658631 0.567335
4 0.613591
0.662019
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(¢) 0.=0.1, 6,=2, Lower bound==0.166667, EV{oc)=0.404065

Sx

x X 0 0.5 1 2 3 4
0 0.848897 0.505219 0.437027 0.413937 0.409227 0.407536
0.502370 0.502370 0.502370 0.502370 0.502370 0.502370
0.5 0.508839 0.437832 0.413966 0.409233 0.407538
0.502467 0.502397 0.502377 0.502373 0.502371
1 0.438494 0.414052 0.409254 0.407547
0.502482 0.502398 0.502382 0.502377
2 0.414412 0.409337 0.407578
0.502486 0.502420 0.502398
3 0.409482 0.407632
0.502487 0.502434
4 0.407711
0.502487

A simple observation on the posterior distribution of ( %) in the univariate case, ¢g=1, will give
us an attractive insight. For the univariate case, «* is the error variance and (¢.°, ¢,2) are the
prior variances of (a,f). The posterior (xf} given the calibration experiments has a bivariate nor-
mal distribution with parameters (u., w5 0%, 0.2, 0x). As in the multivariate case, the variances
and covariance depend on the experimental design c¢aly. Consider the case n> 2 and fixed. It can
be easily verified from the posterior distribution of (%) which is derived in [2], that for fixed
X —x, both o¢,> and o0,° decrease as s, increases, and for fixed s,, they decrease as |x¥ —x; |
decreases. Further, both .2 and ¢,2 have their smallest values when the design is such that
|2 —x:/=0 and s, as large as possible, which indica.es that this design gives the most information
on (aff). Thus, we might say that this design, if feisible, is the most desirable one. The case n=1
seems to be a pathological case because |(x —x.| an s, are identically equal to |x,—x.| so that we
cannot make one large and the other small at the same time. In fact for n=1, as |x —x|

increases, ¢,° increases and o,” decreases.

The optimal solution procedure can be proposed bused on the preceding argument as following:

CONJECTURE . For n>1. Rlx) = R |x —x.. s s decveasing in s, and increasing in
lx —x,| for others fixed.
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4. APPROXIMATIONS IN CONDITIONAL COVARIANCE
MATRIX

In this section, we introduce an idea of approximating the conditional covariance matrix Q

of | % given () to derive the optimal design for the approximate problem. Given (a,f),
¥e

the conditional distribution of y, given x, is Nda+(x,~x,)p, I'). Therefore, the joint distri-
bution of [x/] given (x,f8),

o,y o) =plv | %00 8) plx,).

is a (g-+1)-variate normal distribution with mean vector [ ”] and covariance matrix
o

ool
(% ]
a,2f I ta286" 1- (4.1)
This joint distribution can be obtained by coliecting terms and matching coefficients for nor-
mal densities.
The conditional covariance matrix Q involves the conditioning variable f, which is the crux
of the difficulties in this problem. If we can replace § in Q by its prior mean b, we can find

a near -optimal design under a mild condition. let’s approximate Q by

7,2 6,2b"
P = [ | ]
a,2b I'+o.2bb" | | (4.2)

where we replace f by b. This approximation will be accurate if we are pretty sure that f is
near b, that is, D, O.
Since [;’] given (o,f) is approximately

'
[ jx/’,/} a-ﬁ -~ N(}‘l {[ 2(‘] s P} .
H:t - Sll Slf ]
{#J , S o= [Sn gz i

and

Y, x ~ Ny

K

the predictive distribution of [x,] can be cerived as

Y
X [xu] [ 0-“2 U_HZbT ]
where S = V(«|Y,x) which involves the design x. Then, x, given (y,Y,x) is normal and its

variance 1s

Var(x,ly,Yx) = 02—0,'b'(8"+T+a,2bb") 'b.
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Since this does not depend on y, or Y, it follows that
R(x) = EviEy v« Varlxly,Y,x)]
x g?—gb" [8"(x)+T+a?bb™ b = Rix). (4.3)

Minimizing (4.3) is equivalent to maximizing b"M(x) 'b where
M(x) = S§8"(x)+T+g2bb" (4.4)

If b > 0 we can characterize the optimal design for the approximate problem. We will use the

notation A > 0 (=0) to mean that A is positive {semi) definite.

THEOREM 4.1. IF D,x0, then with the approximation (4.2). the optimal calibration design for
fixed n= 2 is to choose x* such that

S'(x) —8" ¥*) >0,

for all x€Z,. Furthermorve. if S"(x)>0 for all x. then a near optimal design is the one that is
x —xy = 0 and s.#0.

PROOF. Fix #>2. Let x€E, and x* be such that 3"(x)—8"(x*)>0. Since b'b>0, a6 > 0. Let
us denote 4 (A) the £-th largest eigenvalue of matrix A. Since I'>0, and $"(x) and a:2bb’ are >0,

it follows from Beckenbach and Bellman '3][p73] that

AdM(x)] = AlSx)HT] > () > 0, k=123,4q,

which implies M(x) > 0.
Since 8"(x)—8"(x*)=0, we have M(x)—M(x*) 0. It can be shown that for M(x)>0 and
M(x*)>0, if M(x) —=M(x*) >0 then M(x*) '=M(x) ":=(0. [3". Therefore,

b [M(x*) '=Mix) 'Ib > 0,
or
b'M(x*) b = b™(x) b,
hence by (4.3) and (4.4), x* is optimal.
Now suppose S'"(x) > 0. And let €=, be such that E—x=0 and s.#0, where = Y ¢&/n.

Note that, from (3.3),

SH(X) = (S“*Slg S2‘_’ 17821)71
= [D,'+ul '—n2(x —x)2r ' g, 1757
Since Dy '>0 and T >0, S = D, +us T s positive definite, and so is S» ', hence I' 'Sy T} is

positive definite. Thus, we have



120 Sung Chul Kim & B AR TR

nz(x_ —"xu)Q r S’_v_iil r 120,

or [D, “Hnl = [D, Haul =520 —x)2 T7' S, T =0,
or [S"(&O ] ~[S*x)] =0
Since both terms are positive definite, it follows that

SYx)—S (520,

hence ¢ is optimal. o

For the univariate case, (4.3) reduces to

Rix) = o2—0,'b2/(6.2+0c2+¢ *b2)
= [L + —bz—} ' (4.3a)

0,2 Un2+0}2

R'(x) depends on x only through .2, so that the near optimal design is to minimize ¢,
which is the design with x —x, = 0. This agrees with the result of Theorem 4.1. Since the
approximation R'(x) is good for a small g, it s worthwhile to compare R'(x) with R(x) for
g, = 0, whose formula is given in Kim|[1988]. The two formulas are the same, but the values
of 0,2 being applied are different. For R'(x), ¢, depends on the prior variance of f, while for
R(x) when o, = 0, it does not. In fact, when ¢, = 0, R(x) depend on # only. Although R'(x)
does not depend on the posterior variance of fi. the significance of the approximation R'(x) is
the implication that when ¢, is relatively small. the value of ¥ —x. is more important than s,

in determining the optimal design, which agree: with the results of the numerical calculation

in Figure 3.1. (a).
5. NUMERICAL EXAMPLES

In Figure 3. 1, we showed three plots of R(x) from numerical calculations. Each plot
represents different situation of prior variance »f x and f. In this section, we investigate the
three cases in detail and compare R(x) with ths approximation R'(x) given in (4.3.a). Because
of the complexity in the numerical integration, 'wve will consider the univariate case.

To show the effects of the different prior variances of x and f clearly, we use the same
values for some parameters. IFor all three cases, we have fixed the error variance, the prior

mean and variance of x, and the prior means of o and f, as shown in the figure. The number
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of grid points in one numerical integration is 80. Tae selection of »=5 is arbitrarv, but when n is
large, R(x) is small and has little variation. The choice of ¢ and . are not major factors for the
structure of R{x). The three cases are (a) a, = 2, ¢;, = 0.1: (b) ¢, = 1, g» = 1.2; and (¢) 6. =
01, o = 2.

In Figure 3.1, (a) shows the three dimensional jlot of R(x) when o, is much less than »,, for
which we have little uncertainty in f. This is almost the case of ¢,=0, where R(x) is shown to de-
pend on # only. Here, R(x) has some variation in ¥ --x,| but negligible one in s, The case (c)
shows the plot when o, is much less than . This is almost the case of ¢,=0, where R(x) is
decreasing in .. Indeed, R(x) here is almost a cons ant in |x —x,| for a fixed s, and decreasing in
S,. The case (b) is in between these. Notice in all taree cases, that for fixed s, R(x) gets smaller
values as ¥ —x,| decreases, and for fixed |x - x;], R(x) gets smaller as s, increases, which
coincides with the behavior of ¢, and s,2 Furthermore, R(x) is the smallest when |r —x| = 0
and s, as large as possible (here s, =4) in all three cases.

All three cases agree with the conjecture given in Section 3.3 that an optimal design is such that
¥ —xy,| = 0 and s. largest possible. For each design in Table 3.1, there are two numbers corre-
sponding to R(x) and R'(x). We also have, as a refeorence, the value EV(¥% ) of R(x) for the design
that any level of the calibration experiment becomcs infinity. This design corresponds |¥ —x.|—x
and s~ %, so that this design is ncver optimal. We also have, in Table 3.1, the lower bound (2. 7)
of Section 2 to see whether the approximations are acceptible. No value of the approximation
violates this bound. All three cases seem to be cons stent with the results for the special cases, ex-
cept in (a) for ¢,>0, R(x) depends on |¥ —x.| mors than we expected. The approximation R'(x) is
more accurate for @, >0, as we expected. Optimal designs using R'(x) are consistent with the result

obtained in the previous section for all three cases, namely the ones with |x —x.| = 0.
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