• Title/Summary/Keyword: measurement fusion

Search Result 367, Processing Time 0.031 seconds

Selection and Allocation of Point Data with Wavelet Transform in Reverse Engineering (역공학에서 웨이브렛 변황을 이용한 점 데이터의 선택과 할당)

  • Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.158-165
    • /
    • 2000
  • Reverse engineering is reproducing products by directly extracting geometric information from physical objects such as clay model wooden mock-up etc. The fundamental work in the reverse engineering is to acquire the geometric data for modeling the objects. This research proposes a novel method for data acquisition aiming at unmanned fast and precise measurement. This is come true by the sensor fusion with CCD camera using structured light beam and touch trigger sensor. The vision system provides global information of the objects data. In this case the number of data and position allocation for touch sensor is critical in terms of the productivity since the number of vision data is very huge. So we applied wavelet transform to reduce the number of data and to allocate the position of the touch probe. The simulated and experimental results show this method is good enough for data reduction.

  • PDF

Short-range Visible Light Positioning Based on Angle of Arrival for Smart Indoor Service

  • Lee, Yong Up;Park, Seop Hyeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1363-1370
    • /
    • 2018
  • In visible light (VL) positioning based on angle of arrival (AOA) estimation for smart indoor service, the AOA parameters obtained at the receiver has sometimes a random and distributed angle form instead of a point angle form due to the multipath transfer of the actual visible light and short positioning distance. The AOA estimation of a VL signal with a random and parametric distributed angle form may give incorrect AOA parameter estimates, which may result in poor VL positioning performance. In this paper, we classify the AOA parameters of the received VL signal into three forms according to the actual positioning channel environment and consider the short-range VL positioning method. We propose a subspace-based AOA parameter estimation technique and a data fusion method, and analyzed the proposed method by simulation and the measurement of the real VL channel characteristics.

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

Design of range measurement systems using a sonar and a camera (초음파 센서와 카메라를 이용한 거리측정 시스템 설계)

  • Moon, Chang-Soo;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.116-124
    • /
    • 2005
  • In this paper range measurement systems are designed using an ultrasonic sensor and a camera. An ultrasonic sensor provides the range measurement to a target quickly and simply but its low resolution is a disadvantage. We tackle this problem by employing a camera. Instead using a stereoscopic sensor, which is widely used for 3D sensing but requires a computationally intensive stereo matching, the range is measured by focusing and structured lighting. In focusing a straightforward focusing measure named as MMDH(min-max difference in histogram) is proposed and compared with existing techniques. In the method of structure lighting, light stripes projected by a beam projector are used. Compared to those using a laser beam projector, the designed system can be constructed easily in a low-budget. The system equation is derived by analysing the sensor geometry. A sensing scenario using the systems designed is in two steps. First, when better accuracy is required, measurements by ultrasonic sensing and focusing of a camera are fused by MLE(maximum likelihood estimation). Second, when the target is in a range of particular interest, a range map of the target scene is obtained by using structured lighting technique. The systems designed showed measurement accuracy up to 0.3[mm] approximately in experiments.

Radiologic Assessment of Subsidence in Stand-Alone Cervical Polyetheretherketone (PEEK) Cage

  • Ha, Sung-Kon;Park, Jung-Yul;Kim, Se-Hoon;Lim, Dong-Jun;Kim, Sang-Dae;Lee, Sang-Kook
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.6
    • /
    • pp.370-374
    • /
    • 2008
  • Objective : Aim of study was to find a proper method for assessing subsidence using a radiologic measurement following anterior cervical discectomy and fusion (ACDF) with stand-alone polyetheretherketone (PEEK), $Solis^{TM}$ cage. Methods : Forty-two patients who underwent ACDF with $Solis^{TM}$ cage were selected. With a minimum follow-up of 6 months, the retrospective investigation was conducted for 37 levels in 32 patients. Mean follow-up period was 18.9 months. Total intervertebral height (TIH) of two fused vertebral bodies was measured on digital radiographs with built-in software. Degree of subsidence (${\Delta}TIH$) was reflected by the difference between the immediate postoperative and follow-up TIH. Change of postoperative disc space height (CT-MR ${\Delta}TIH$) was reflected by the difference between TIH of the preoperative mid-sagittal 2D CT and that of the preoperative mid-sagittal T1-weighted MRI. Results : Compared to preoperative findings, postoperative disc height was increased in all cases and subsidence was observed only in 3 cases. For comparison of subsidence and non-subsidence group, TIH and CT-MR ${\Delta}TIH$ of each group were analyzed. There was no statistically significant difference in TIH and CT-MR ${\Delta}TIH$ between each group at 4 and 8 weeks, but a difference was observed at the last follow-up TIH (p=0.0497). Conclusion : ACDF with $Solis^{TM}$ cage was associated with relatively good radiologic long-term results. Fusion was achieved in 94.5% and subsidence occurred in 8.1% by the radiologic assessment. Statistical analysis reveals that the subsidence seen later than 8 weeks after surgery and the development of subsidence does not correlate statistically with the change of the postoperative disc space height.

8-port Coupled Transmission Line Modeling of KSATR ICRF Antenna and Comparison with Measurement (커플링이 고려된 KSTAR ICRF 안테나의 8포트 전송선 회로 모델링 및 측정 결과 비교)

  • Kim, S.H.;Wang, S.J.;Hwang, C.K.;Kwak, J.G.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.72-80
    • /
    • 2010
  • It is very important to predict and analyze the change of voltage and current distribution of current strap, abnormal voltage distribution of transmission line and resonance phenomenon by coupling between current straps for more stable operation of ICRF system. In this study, to understand those phenomena by coupling, 8-port coupled transmission line model is completed by appling S-parameter measured in the prototype KSTAR ICRF antenna to the model. The determined self-inductance, mutual-inductance and capacitance of antenna straps are shown to be lower than that calculated from 2D approximate model due to finite length of strap. The coupled transmission line model of current strap will be utilized to the operation of ICRF system of KSTAR in the future.

Investigation of Ag Migration from Ag Paste Bump in Printed Circuit Board (Ag Paste bump 구조를 갖는 인쇄회로기판의 Ag migration 발생 안전성 평가)

  • Song, Chul-Ho;Kim, Young-Hun;Lee, Sang-Min;Mok, Jee-Soo;Yang, Yong-Suk
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The current study examined Ag migration from the Ag paste bump in the SABiT technology-applied PCB. A series of experiments were performed to measure the existence/non-existence of Ag in the insulating prepreg region. The average grain size of Ag paste was 30 nm according to X-ray diffraction (XRD) measurement. Conventional XRD showed limitations in finding a small amount of Ag in the prepreg region. The surface morphology and cross section view in the Cu line-Ag paste bump-Cu line structure were observed using a field emission scanning electron microscope (FE-SEM). The amount of Ag as a function of distance from the edge of Ag paste bump was obtained by FE-SEM with energy dispersive spectroscopy (EDS). We used an electron probe micro analyzer (EPMA) to improve the detecting resolution of Ag content and achieved the Ag distribution function as a function of the distance from the edge of the Ag paste bump. The same method with EPMA was applied for Cu filled via instead of Ag paste bump. We compared the distribution function of Ag and Cu, obtained from EPMA, and concluded that there was no considerable Ag migration effect for the SABiT technology-applied printed circuit board (PCB).

Effects of Gelatin Additives on the Microstructures and Corrosion Properties of Electrodeposited Cu Thin Films (젤라틴 첨가에 의한 구리 박막의 미세구조 변화 및 부식 특성)

  • Kim, Minho;Cha, Hee-Ryoung;Choi, Changsoon;Kim, Hae-sung;Lee, Dongyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.757-764
    • /
    • 2010
  • We report on the effect of additives on the microstructure and corrosion properties of electrodeposited Cu films. Copper films were fabricated by electrodeposition on various concentrations of gelatin in a copper sulfate electrolyte. The surface morphologies of the Cu films were observed using a scanning electron microscope (SEM), and crystal orientation of the Cu films was analyzed by X-ray diffraction measurement. (220) plane was the dominant orientation when the films were fabricated at ambient temperature, decreasing in dominance with addition of gelatin. On the other hand, (111) plane-Cu films were preferentially grown at $40^{\circ}C$, and were also diminished with adding additives. Corrosion rate measurements using the Tafel extrapolation method based on corrosion potential and current reveal the effect of additives on corrosion behavior. Corrosion behavior was found to be strongly related to the orientation of the films. Consequently, additives like gelatin influence crystal orientation of the films, and if a less dense crystal plane, e.g. (220), is preferentially oriented during electrodeposition, a lower corrosion rate could be produced, since the plane shows a lower current density.

Assesment of Renewable Energy (신재생 에너지 고찰)

  • Lee, Sang-Heon;Koo, Kyoung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2071-2072
    • /
    • 2011
  • Withstand voltage characteristics of the nanocomposites, as a material with excellent abrasion resistance and water resistance, low shrinkage upon curing with moisture even in very good adhesion, workability is not lost. In this study, the fusion of nanoparticles and the high functionality epoxy nano-composite material produces the electricity. Degeneration of the unit based on this power structure and breakdown characteristics, efficiency and cross-measurement system as closely related organisms that can be applied to the power plant electrical efficiency of the nano-composite material is designed to develop skills.

  • PDF