1 |
Leung, C.L.A., Marussi, S., Atwood, R.C., Towrie, M., Withers, P.J. and Lee, P.D. (2018), "In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing", Nature Commun., 9(1), 1-9. https://doi.org/10.1038/s41467-018-03734-7.
DOI
|
2 |
Li, C., Liu, J.F., Fang, X.Y. and Guo, Y.B. (2017), "Efficient predictive model of part distortion and residual stress in selective laser melting", Additive Manuf., 17, 157-168. https://doi.org/10.1016/j.addma.2017.08.014.
DOI
|
3 |
Liang, X., Cheng, L., Chen, Q., Yang, Q. and To, A.C. (2018), "A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition", Additive Manuf., 23, 471-486. https://doi.org/10.1016/j.addma.2018.08.029.
DOI
|
4 |
Liu, S., Zhu, H., Peng, G., Yin, J. and Zeng, X. (2018), "Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis", Mater. Des., 142, 319-328. https://doi.org/10.1016/j.matdes.2018.01.022.
DOI
|
5 |
Mercelis, P. and Kruth, J.P. (2006), "Residual stresses in selective laser sintering and selective laser melting", Rapid Prototyping J., 12(5), 254-265. https://doi.org/10.1108/13552540610707013.
DOI
|
6 |
Mills, K.C. (2002), Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing.
|
7 |
Queva, A., Guillemot, G., Moriconi, C., Metton, C. and Bellet, M. (2020), "Numerical study of the impact of vaporisation on melt pool dynamics in Laser Powder Bed Fusion-Application to IN718 and Ti-6Al-4V", Additive Manuf., 35, 101249. https://doi.org/10.1016/j.addma.2020.101249.
DOI
|
8 |
Boivineau, M., Cagran, C., Doytier, D., Eyraud, V., Nadal, M.H., Wilthan, B. and Pottlacher, G. (2006), "Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy", Int. J. Thermophys., 27(2), 507-529. https://doi.org/10.1007/PL00021868.
DOI
|
9 |
Bruna-Rosso, C., Demir, A.G. and Previtali, B. (2018), "Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction", Mater. Des., 156, 143-153. https://doi.org/10.1016/j.matdes.2018.06.037.
DOI
|
10 |
Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K. and Schrage, J. (2014), "Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting", J. Laser Appl., 26(1), 012004. https://doi.org/10.2351/1.4828755.
DOI
|
11 |
Cam, G. and Kocak, M. (1998), "Progress in joining of advanced materials", Int. Mater. Rev., 43(1), 1-44. https://doi.org/10.1179/imr.1998.43.1.1.
DOI
|
12 |
Chen, C., Yin, J., Zhu, H., Xiao, Z., Zhang, L. and Zeng, X. (2019b), "Effect of overlap rate and pattern on residual stress in selective laser melting", Int. J. Mach. Tool. Manu., 145, 103433. https://doi.org/10.1016/j.ijmachtools.2019.103433.
DOI
|
13 |
Abaqus, V. (2014), 6.14 Documentation, Dassault Systemes Simulia Corporation, 651, 6.2.
|
14 |
Ansari, M.J., Nguyen, D.S. and Park, H.S. (2019), "Investigation of SLM process in terms of temperature distribution and melting pool size: Modeling and experimental approaches", Materials, 12(8), 1272. https://doi.org/10.3390/ma12081272.
DOI
|
15 |
Das, M., Balla, V. K., Basu, D., Bose, S. and Bandyopadhyay, A. (2010), "Laser processing of SiC-particlereinforced coating on titanium", Scripta Materialia, 63(4), 438-441. https://doi.org/10.1016/j.scriptamat.2010.04.044.
DOI
|
16 |
Chen, Q., Liang, X., Hayduke, D., Liu, J., Cheng, L., Oskin, J., Whitmore, R. and To, A.C. (2019a), "An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering", Additive Manuf., 28, 406-418. https://doi.org/10.1016/j.addma.2019.05.021.
DOI
|
17 |
Boyer, R.R. (1996), "An overview on the use of titanium in the aerospace industry", Mater. Sci. Eng. A, 213(1-2), 103-114. https://doi.org/10.1016/0921-5093(96)10233-1.
DOI
|
18 |
Ciurana, J., Hernandez, L. and Delgado, J. (2013), "Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material", Int. J. Adv. Manuf. Tech., 68(5-8), 1103-1110. https://doi.org/10.1007/s00170-013-4902-4.
DOI
|
19 |
Dausinger, F. and Shen, J. (1993), "Energy coupling efficiency in laser surface treatment", ISIJ Int., 33(9), 925-933. https://doi.org/10.2355/isijinternational.33.925.
DOI
|
20 |
Del Bello, U., Rivela, C., Cantello, M. and Penasa, M. (1991), "Energy balance in high-power CO2 laser welding", Proceedings of the Industrial and Scientific Uses of High-Power Lasers, Hague, The Netherlands, March.
|
21 |
Dilip, J.J.S., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D. and Stucker, B. (2017), "Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting", Prog. Addit. Manuf., 2(3), 157-167. https://doi.org/10.1007/s40964-017-0030-2.
DOI
|
22 |
Zhao, C., Fezzaa, K., Cunningham, R.W., Wen, H., De Carlo, F., Chen, L., Rollett, A.D. and Sun, T. (2017), "Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction", Sci. Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-03761-2.
DOI
|
23 |
Yadroitsev, I., Gusarov, A., Yadroitsava, I. and Smurov, I. (2010), "Single track formation in selective laser melting of metal powders", J. Mater. Process. Tech., 210(12), 1624-1631. https://doi.org/10.1016/j.jmatprotec.2010.05.010.
DOI
|
24 |
Yap, C.Y., Chua, C.K., Dong, Z.L., Liu, Z.H., Zhang, D.Q., Loh, L.E. and Sing, S.L. (2015), "Review of selective laser melting: Materials and applications", Appl. Phys. Rev., 2(4), 041101. https://doi.org/10.1063/1.4935926.
DOI
|
25 |
Zhang, Z., Huang, Y., Kasinathan, A.R., Shahabad, S.I., Ali, U., Mahmoodkhani, Y. and Toyserkani, E. (2019), "3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity", Opt. Laser Technol., 109, 297-312. https://doi.org/10.1016/j.optlastec.2018.08.012.
DOI
|
26 |
Rangaswamy, P., Prime, M.B., Daymond, M., Bourke, M.A.M., Clausen, B., Choo, H. and Jayaraman, N. (1999), "Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti-6Al-4V) matrix composite", Mater. Sci. Eng. A, 259(2), 209-219. https://doi.org/10.1016/S0921-5093(98)00893-4.
DOI
|
27 |
Fukuhara, M. and Sanpei, A. (1993), "Elastic moduli and internal frictions of Inconel 718 and Ti-6Al-4V as a function of temperature", J. Mater. Sci. Lett., 12(14), 1122-1124. https://doi.org/10.1007/BF00420541.
DOI
|
28 |
Fabbro, R. (2010), "Melt pool and keyhole behaviour analysis for deep penetration laser welding", J. Phys. D Appl. Phys., 43(44), 445501. https://doi.org/10.1088/0022-3727/43/44/445501.
DOI
|
29 |
Fan, Z. and Liou, F. (2012), Numerical Modeling of the Additive Manufacturing (AM) Processes of Titanium Alloy, in Titanium Alloys-Towards Achieving Enhanced Properties for Diversified Applications, 3-28.
|
30 |
Fu, C.H. and Guo, Y.B. (2014), "Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V", J. Manuf. Sci. Eng., 136(6), 061004. https://doi.org/10.1115/1.4028539.
DOI
|
31 |
Gan, M.X. and Wong, C.H. (2016), "Practical support structures for selective laser melting", J. Mater. Process. Tech., 238, 474-484. https://doi.org/10.1016/j.jmatprotec.2016.08.006.
DOI
|
32 |
Gu, D.D., Meiners, W., Wissenbach, K. and Poprawe, R. (2012), "Laser additive manufacturing of metallic components: Materials, processes and mechanisms", Int. Mater. Rev., 57(3), 133-164. https://doi.org/10.1179/1743280411Y.0000000014.
DOI
|
33 |
Gu, D., Wang, H. and Zhang, G. (2014), "Selective laser melting additive manufacturing of Ti-based nanocomposites: The role of nanopowder", Metall. Mater. Trans. A, 45(1), 464-476. https://doi.org/10.1007/s11661-013-1968-4.
DOI
|
34 |
Han, Q., Geng, Y., Setchi, R., Lacan, F., Gu, D. and Evans, S.L. (2017), "Macro and nanoscale wear behaviour of Al-Al2O3 nanocomposites fabricated by selective laser melting", Compos. Part B Eng., 127, 26-35. https://doi.org/10.1016/j.compositesb.2017.06.026.
DOI
|
35 |
Shi, W., Liu, Y., Shi, X., Hou, Y., Wang, P. and Song, G. (2018), "Beam diameter dependence of performance in thick-layer and high-power selective laser melting of Ti-6Al-4V", Materials, 11(7), 1237. https://doi.org/10.3390/ma11071237.
DOI
|
36 |
Roberts, I.A. (2012), "Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing", Ph.D. Dissertation, University of Wolverhampton, Wolverhampton, England, U.K.
|
37 |
Roy, S., Juha, M., Shephard, M.S. and Maniatty, A.M. (2018), "Heat transfer model and finite element formulation for simulation of selective laser melting", Comput. Mech., 62(3), 273-284. https://doi.org/10.1007/s00466-017-1496-y.
DOI
|
38 |
Seifter, A., Pottlacher, G., Jager, H., Groboth, G. and Kaschnitz, E. (1998), "Measurements of thermophysical properties of solid and liquid Fe-Ni alloys", Berichte der Bunsengesellschaft fur physikalische Chemie, 102(9), 1266-1271. https://doi.org/10.1002/bbpc.19981020934.
DOI
|
39 |
Shrestha, S., Starr, T. and Chou, K. (2019), "A study of keyhole porosity in selective laser melting: singletrack scanning with micro-CT analysis", J. Manuf. Sci. E., 141(7). https://doi.org/10.1115/1.4043622.
DOI
|
40 |
Singh, P., Pungotra, H. and Kalsi, N.S. (2017), "On the characteristics of titanium alloys for the aircraft applications", Mater. Today Proc., 4(8), 8971-8982. https://doi.org/10.1016/j.matpr.2017.07.249.
DOI
|
41 |
Trapp, J., Rubenchik, A.M., Guss, G. and Matthews, M.J. (2017), "In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing", Appl. Mater. Today, 9, 341-349. https://doi.org/10.1016/j.apmt.2017.08.006.
DOI
|
42 |
Vanderhasten, M., Rabet, L. and Verlinden, B. (2008), "Ti-6Al-4V: Deformation map and modelisation of tensile behaviour", Mater. Des., 29(6), 1090-1098. https://doi.org/10.1016/j.matdes.2007.06.005.
DOI
|
43 |
Kaci, D. A., Madani, K., Mokhtari, M., Feaugas, X. and Touzain, S. (2017), "Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate", Adv. Aircraft Spacecraft Sci., 4(6), 679-699. http://doi.org/10.12989/aas.2017.4.6.679.
DOI
|
44 |
Herzog, D., Seyda, V., Wycisk, E. and Emmelmann, C. (2016), "Additive manufacturing of metals", Acta Materialia, 117, 371-392. https://doi.org/10.1016/j.actamat.2016.07.019.
DOI
|
45 |
Hu, Z., Zhu, H., Zhang, C., Zhang, H., Qi, T. and Zeng, X. (2018), "Contact angle evolution during selective laser melting", Mater. Des., 139, 304-313. https://doi.org/10.1016/j.matdes.2017.11.002.
DOI
|
46 |
Hussein, A., Hao, L., Yan, C. and Everson, R. (2013), "Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting", Mater. Des. (1980-2015), 52, 638-647. https://doi.org/10.1016/j.matdes.2013.05.070.
DOI
|
47 |
Kamara, A. M., Wang, W., Marimuthu, S. and Li, L. (2011), "Modelling of the melt pool geometry in the laser deposition of nickel alloys using the anisotropic enhanced thermal conductivity approach", Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 225(1), 87-99. https://doi.org/10.1177%2F09544054JEM2129.
DOI
|
48 |
Vastola, G., Zhang, G., Pei, Q.X. and Zhang, Y.W. (2016), "Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling", Additive Manuf., 12, 231-239. https://doi.org/10.1016/j.addma.2016.05.010.
DOI
|
49 |
Wang, S.L., Sekerka, R.F., Wheeler, A.A., Murray, B.T., Coriell, S.R., Braun, R. and McFadden, G. B. (1993), "Thermodynamically-consistent phase-field models for solidification", Physica D Nonlin. Phenom., 69(1-2), 189-200. https://doi.org/10.1016/0167-2789(93)90189-8.
DOI
|
50 |
Welsch, G., Boyer, R. and Collings, E.W. (1993), Materials Properties Handbook: Titanium Alloys, ASM International.
|
51 |
Kruth, J. P., Froyen, L., Van Vaerenbergh, J., Mercelis, P., Rombouts, M. and Lauwers, B. (2004), "Selective laser melting of iron-based powder", J. Mater. Process. Tech., 149(1-3), 616-622. https://doi.org/10.1016/j.jmatprotec.2003.11.051.
DOI
|
52 |
Lampa, C., Kaplan, A.F., Powell, J. and Magnusson, C. (1997), "An analytical thermodynamic model of laser welding", J. Phys. D Appl. Phys., 30(9), 1293. https://doi.org/10.1088/0022-3727/30/9/004.
DOI
|
53 |
Lee, K.H. and Yun, G.J. (2020a), "A novel heat source model for analysis of melt pool evolution in selective laser melting process", Additive Manuf., 36, 101497. https://doi.org/10.1016/j.addma.2020.101497.
DOI
|
54 |
Verhaeghe, F., Craeghs, T., Heulens, J. and Pandelaers, L. (2009), "A pragmatic model for selective laser melting with evaporation", Acta Materialia, 57(20), 6006-6012. https://doi.org/10.1016/j.actamat.2009.08.027.
DOI
|
55 |
Lee, K.H. and Yun, G.J. (2020b), "Prediction of melt pool dimension and residual stress evolution with thermodynamically-consistent phase field and consolidation models during re-melting process of SLM", Comput. Mater. Continua, 66(1), 87-112. http://doi.org/10.32604/cmc.2020.012688.
DOI
|