International Journal of Fuzzy Logic and Intelligent Systems
/
v.1
no.1
/
pp.75-80
/
2001
Rule inconsistency is an important issue that is needed to be addressed while designing efficient and optimal fuzzy rule bases. Automatic generation of fuzzy rules from data sets, using machine learning techniques, can generate a significant number of redundant and inconsistent rules. In this study we have shown that it is possible to provide a systematic approach to understand the fuzzy rule inconsistency problem by using the proposed measure called the Commonality measure. Apart from introducing this measure, this paper describes an algorithm to optimize a fuzzy rule base using it. The optimization procedure performs elimination of redundant and/or inconsistent fuzzy rules from a rule base.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.2
/
pp.292-297
/
2010
In this paper, we introduce the notions of inconsistency p-measure, consistency p-measure and fuzziness p-measure. We discuss various properties of them. We investigate the degree of inconsistency and roughness p-measure in a decision table.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.2
/
pp.276-283
/
2007
It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy rulebase. The proposed method is applied to problems or fuzzy system reproduction and nonlinear system modeling in order to validate our claim.
Journal of the Korean Society of Clothing and Textiles
/
v.22
no.5
/
pp.617-627
/
1998
In marketing reserach, the ultimate goal is to increase predictability of consumer's purchse behavior. However, most of the marketing researchers measure purchase intention rather than behavior assuming that the consumer's purchase behaviors will coincide with their intentions. Lately, there have been many arguments whether purchase intention is meaningful as a determinant or a predictor for purchase behavior. Additionally, many studies reported substantial variations among the 'product categories. The purpose of this study was to find out the relationship between consumer's purchase intention and purchase behavior of apparel products. Two research questions were set up. One was to find out the relationship between the intention and behavior, and the other was to find out the factors affecting the relationship. It was found out that mere intention could neither explain nor predict behavior, and that the factors affecting intenting intention- behavior inconsistency had to be submitted for explanation and prediction. These factors could explain inconsistency between the intention and the behavior. Regression equations in the past researches explained aggregate results, but coludn't explain each consumer's intention-behavior inconsistency. The integration of the specific intention and the affecting factors can increase predictability of each consumer's purchase behavior.
Proceedings of the Safety Management and Science Conference
/
2006.11a
/
pp.427-435
/
2006
We study on the consistency of AHP. It is research that extend of SAW methods by [1]. For tools that measure judgment of inconsistency eigenvector methods, we research consistency that introduced consistency ratio by Saaty. in general, the higher consistence of compare matrix the bigger error within matrix. In this paper, we use the AHP for the optimal decision making. By this method, we have optimal decision making numenical example which three models of any domestic motors companies.
We develop a feature selection method that can improve both the efficiency and the effectiveness of classification technique. In this research, we employ case-based reasoning as a classification technique. Basically, this research integrates the two existing feature selection methods, i.e., the univariate analysis and the LVF algorithm. First, we sift some predictive features from the whole set of features using the univariate analysis. Then, we generate all possible subsets of features from these predictive features and measure the inconsistency rate of each subset using the LVF algorithm. Finally, the subset having the lowest inconsistency rate is selected as the best subset of features. We measure the performances of our feature selection method using the data obtained from UCI Machine Learning Repository, and compare them with those of existing methods. The number of selected features and the accuracy of our feature selection method are so satisfactory that the improvements both in efficiency and effectiveness are achieved.
Kim, Hark-Soo;Ko, Young-Joong;Park, Soo-Yong;Seo, Jung-Yun
Journal of KIISE:Software and Applications
/
v.27
no.1
/
pp.13-23
/
2000
As software becomes more complicated and large-scaled, user's demands become more varied and his expectation levels about software products are raised. Therefore it is very important that a software engineer analyzes user's requirements precisely and applies it effectively in the development step. This paper presents a requirements analysis system that reduces and revises errors of requirements specifications analysis effectively. As this system measures the similarity among requirements documents and sentences, it assists users in analyzing the dependency among requirements specifications and finding the traceability, redundancy, inconsistency and incompleteness among requirements sentences. It also extracts sentences that contain ambiguous words. Indexing method for the similarity measurement combines sliding window model and dependency structure model. This method can complement each model's weeknesses. This paper verifies the efficiency of similarity measure techniques through experiments and presents a proccess of the requirements specifications analysis using the embodied system.
In the field of data mining technique, there are various methods such as association rules, cluster analysis, decision tree, neural network. Among them, association rules are defined by using various association evaluation criteria such as support, confidence, and lift. Agrawal et al. (1993) first proposed this association rule, and since then research has been conducted by many scholars. Recently, studies related to crossover entropy have been published (Park, 2016b). In this paper, we proposed a purely symmetric J measure considering directionality and purity in the previously published J measure, and examined its usefulness by using examples. As a result, it is found that the pure symmetric J measure changes more clearly than the conventional J measure, the symmetric J measure, and the pure crossover entropy measure as the frequency of coincidence increases. The variation of the pure symmetric J measure was also larger depending on the magnitude of the inconsistency, and the presence or absence of the association was more clearly understood.
Journal of Institute of Control, Robotics and Systems
/
v.15
no.9
/
pp.906-908
/
2009
AVI (Automatic Vision Inspection) systems automatically detect defect features and measure their sizes via camera vision. It is important to predict the performance of an AVI to meet customer's specification in advance. Also the prediction can indicate the level of current performance of an AVI system. In this paper, we propose a statistical method for prediction of false alarm rate regarding inconsistency of defect size measurement process. For this purpose, only simple experiments are needed to measure the defect sizes for certain number of times. The statistical features from the experiment are utilized in the prediction process. Therefore, the proposed method is swift and easy to implement and use. The experiment shows a close prediction compared to manual inspection results.
Journal of Advanced Marine Engineering and Technology
/
v.26
no.3
/
pp.382-388
/
2002
Dissolved silica is one of fatal components at a boiler facility Therefore, a dissolved silica measurement system should be equipped for managing efficiently the boiler facility. Most of silica measurement systems are composed of a sensor module of single-beam type structure, and silica density is measured with a infrared spectrometry using the Lambert-beer method. However, such a system occurs measuring error of large range and inconsistency of a light source, because of measuring a standard sample and a measuring sample alternatively. This paper introduces a method that the sensor module has a split-beam type structure and a tungsten lamp. The proposed system can measure silica density quickly and precisely more than those composing of a single-beam type structure, because of measuring and comparing with two samples at a same time. And examination results are shown to compare efficiencies of the system and existing commercial products, and for an ammonia influence.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.