• Title/Summary/Keyword: mean daily temperature

Search Result 466, Processing Time 0.025 seconds

The Spectral Characteristics of Climatological Variables over the Asian Dust Source Regions and its Association with Particle Concentrations in Busan (황사 발원지 기후자료의 시계열 특성과 부산지역 먼지 농도의 연관성 분석)

  • Son, Hye-Young;Kim, Cheol-Hee
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.734-743
    • /
    • 2009
  • In order to examine how climatological condition can influence on urban scale particulate air pollutants, single and cross spectrum analysis have been performed to daily mean concentrations of particulate matters ($PM_{10}$) in Busan together with the climatological variables over the Asian dust source regions. Single power spectrum analysis of $PM_{10}$ concentrations in Busan shows that, aside from the typical and well-known periodicities, 3-4 year of peak periodicity of power spectrum density was identified. In cross spectrum analysis, this 3-4 year periodicity is found to have a strong positive correlation with the wind speed and pressure, and negative with the temperature and relative humidity, which is rather consistent with both characteristics of air mass during the Asian dust event whose periodicities have been recorded inter-annually over the Korean urban cities. Over the Asian dust source regions, $PM_{10}$ vs. precipitation shows no significant periodicity from the time series of precipitation data, but the periodicity of EDI (Effective Drought Index) shows some interannual variabilities ranging from 2 to 4 years over the various source regions, suggesting that, rather than precipitation itself, the EDI could be more closely associated with the occurrence frequency of Asian dust and interannual variability of urban particle concentrations in Korean cities.

Study on Flowering, Pollination and Samara Characteristics of Chinese elm, Ulmus parvifolia in Wonju, Korea (참느릅나무의 개화, 수분 및 결실 특성에 관한 연구)

  • Kim, Gab-Tae;Kim, Hoi-Jin;Choo, Gab-Cheul
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.588-592
    • /
    • 2012
  • To examine the reason of empty samara production of Chinese elm, Ulmus parviflora, twenty two planted trees in Wonju-si were monitered for three years in terms of their flowering, pollinatiom system and samara characteristics. Inflorescences with bisexual flowers of Chinese elm are developed in the leaf axils on the twigs. Dichogamous flowers are varied with protogynuous and protandrous flower, and stamens in some bisexual flowers are developed in seperated time on a inflorescence or a tree. It is revealed newly that the flower of Chinese elm is out-crossed and partially insect(Apis mellifera) pollinated. The ratios of sound samara are significantly differed among years, the heighest values 65.5% were shown in 2009, lowered 42.9% in 2010, and the lowest 37.5% in 2011. This result might be affected by mean daily precipitation and number of rainy days during the flowering date, and lower temperature during the floral initiation stage, especially in 2011. These findings suggest that Chinese elm has self-incompatibility strategy and much pollination failure resulted in a production of much empty samaras. Further researches on the empty-seed production strategies and pollination system of major tree species might be needed.

Comparison of the Seed Productivity of Italian Ryegrass in Different Regions (다른 지역에서 이탈리안 라이그라스의 종자 생산성 비교)

  • Byeon, Ji-Eun;Lee, Hong-Ju;Hwang, Sun-Goo;Ryoo, Jong-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.428-434
    • /
    • 2021
  • To study whether the area under the cultivation of Italian ryegrass (IRG) has increased with rise in global temperatures, we investigated the effects of climatic variables on seed productivity in different parts of Gangwon-do, South Korea. Specifically, IRG was cultivated in the western (Gangneung), central (Wonju), and northern (Chuncheon) parts of Gangwon-do. The heading date of IRG in Gangneung was earlier than that in the other regions. Moreover, the values of agronomic traits, including spikelets per spike, grains per spike, and thousand-grain weight, were lower in Chuncheon. However, there were no differences spikelets per spike and grains per spike between Wonju and Gangneung. Additionally, the thousand-grain weight and seed production were higher in Gangneung. Statistical correlation analysis between climatic variables and agronomic traits revealed that the mean daily minimum temperature was positively correlated with seed formation-related traits in April and seed maturity-related traits in May. In the light of rising minimum temperatures in Gangwon-do, Gangneung, Chuncheon and Wonju are suitable areas for IRG cultivation with optimal seed productivity.

Analysis of Future Land Use and Climate Change Impact on Stream Discharge (미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석)

  • Ahn, So Ra;Lee, Yong Jun;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.215-224
    • /
    • 2008
  • The effect of streamflow considering future land use change and vegetation index information by climate change scenario was assessed using SLURP (Semi-distributed Land-Use Runoff Process) model. The model was calibrated and verified using 4 years (1999-2002) daily observed streamflow data for the upstream watershed ($260.4km^2$) of Gyeongan water level gauging station. By applying CA-Markov technique, the future land uses (2030, 2060, 2090) were predicted after test the comparison of 2004 Landsat land use and 2004 CA-Markov land use by 1996 and 2000 land use data. The future land use showed a tendency that the forest and paddy decreased while urban, grassland and bareground increased. The future vegetation indices (2030, 2060, 2090) were estimated by the equation of linear regression between monthly NDVI of NOAA AVHRR images and monthly mean temperature of 5 years (1998-2002). Using CCCma CGCM2 simulation result based on SRES A2 and B2 scenario (2030s, 2060s, 2090s) of IPCC and data were downscaled by Stochastic Spatio-Temporal Random Cascade Model (SST-RCM) technique, the model showed that the future runoff ratio was predicted from 13% to 34% while the runoff ratio of 1999-2002 was 59%. On the other hand, the impact on runoff ratio by land use change showed about 0.1% to 1% increase.

Analysing the Relationship Between Tree-Ring Growth of Pinus densiflora and Climatic Factors Based on National Forest Inventory Data (국가산림자원조사 자료를 활용한 소나무 연륜생장과 기후인자와의 관계분석)

  • Lim, Jong-Hwan;Park, Go Eun;Moon, Na Hyun;Moon, Ga Hyun;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.249-257
    • /
    • 2017
  • This study was conducted to analyze the relationship between tree-ring growth of Pinus densiflora and climate factors based on national forest inventory(NFI) data. Annual tree-ring growth data of P. densiflora collected by the $5^{th}$ NFI were first organized to analyze yearly growth patterns of the species. Yearly growing degree days and standard precipitation index based on daily mean temperature and precipitation data from 1951 to 2010 were calculated. Using the information, yearly temperature effect index(TEI) and precipitation effect index(PEI) were estimated to analyze the effect of climate conditions on the tree-ring growth of the species. A tree-ring growth estimation equation appropriate for P. densiflora was then developed by using the TEI and PEI as independent variables. The tree-ring growth estimation equation was finally applied to the climate change scenarios of RCP 4.5 and RCP 8.5 for predicting the changes in tree-ring growth of P. densiflora from 2011 to 2100. The results indicate that tree-ring growth of P. densiflora is predicted to be decreased over time when the tree-ring growth estimation equation is applied to the climate change scenarios of RCP 4.5 and RCP 8.5. It is predicted that the decrease of tree-ring growth over time is relatively small when RCP 4.5 is applied. On the other hand, the steep decrease of tree-ring growth was found in the application of RCP 8.5, especially after the year of 2050. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of P. densiflora and for predicting changes in tree-ring growth patterns caused by climates change.

Effects of Sowing Date on Grain Filling and Related Traits in Winter Barley (파종기 차이가 보리의 등숙과 등숙관련 형질에 미치는 영향)

  • 류용환;이창덕;하용웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.93-103
    • /
    • 1992
  • Experiments were conducted in the research field of the Wheat and Barley Research Institute with three barley cultivars, Olbori, Kangbori and Suwon 18, which showed different growth characteristics. The highest rates of daily dry matter accumulation in grains were 1.03 1.94 mg / grain / day in early and optimum sowings and 0.88 1.88 mg / grain / day in late sowings, which occurred around 20~30 days after heading in early and optimum sowings and 15~20 days after heading in late sowings. Grains reached their maximum weight by 40 days after heading in early and optimum sowings and 35 days after heading in late sowings. Total sugar content in grains followed a pattern of linear increase immediately after heading, but it started to decrease around 20 days after heading. On the other hand, starch content continued to increase until maturity. The contents of both components were high in the order of 'Olbori' > 'Kangbori' > 'Suwon 18', but they did not respond in a regular pattern to different sowings. 1,000 grain weight showed highly significant positive correlation(r=0.767$^{**}$) with the duration of grain growth, but it had negative correlations with the average (r=-0.548$^{**}$) or the sum (r=-0.595$^{**}$) of post-anthesis daily mean temperature.ature.

  • PDF

Climate Change Impact on Nonpoint Source Pollution in a Rural Small Watershed (기후변화에 따른 농촌 소유역에서의 비점오염 영향 분석)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.209-221
    • /
    • 2006
  • The purpose of this study is to analyze the effects of climate change on the nonpoint source pollution in a small watershed using a mid-range model. The study area is a basin in a rural area that covers 384 ha with a composition of 50% forest and 19% paddy. The hydrologic and water quality data were monitored from 1996 to 2004, and the feasibility of the GWLF (Generalized Watershed Loading function) model was examined in the agricultural small watershed using the data obtained from the study area. As one of the studies on climate change, KEI (Korea Environment Institute) has presented the monthly variation ratio of rainfall in Korea based on the climate change scenario for rainfall and temperature. These values and observed daily rainfall data of forty-one years from 1964 to 2004 in Suwon were used to generate daily weather data using the stochastic weather generator model (WGEN). Stream runoff was calibrated by the data of $1996{\sim}1999$ and was verified in $2002{\sim}2004$. The results were determination coeff, ($R^2$) of $0.70{\sim}0.91$ and root mean square error (RMSE) of $2.11{\sim}5.71$. Water quality simulation for SS, TN and TP showed $R^2$ values of 0.58, 0.47 and 0.62, respectively, The results for the impact of climate change on nonpoint source pollution show that if the factors of watershed are maintained as in the present circumstances, pollutant TN loads and TP would be expected to increase remarkably for the rainy season in the next fifty years.

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

Analysis of Sensitivity to Prediction of Particulate Matters and Related Meteorological Fields Using the WRF-Chem Model during Asian Dust Episode Days (황사 발생 기간 동안 WRF-Chem 모델을 이용한 미세먼지 예측과 관련 기상장에 대한 민감도 분석)

  • Moon, Yun Seob;Koo, Youn Seo;Jung, Ok Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The purpose of this study was to analyze the sensitivity of meteorological fields and the variation of concentration of particulate matters (PMs) due to aerosol schemes and dust options within the WRF-Chem model to estimate Asian dusts affected on 29 May 2008 in the Korean peninsula. The anthropogenic emissions within the model were adopted by the $0.5^{\circ}{\pm}0.5^{\circ}$ RETRO of the global emissions, and the photolysis option was by Fast-J photolysis. Also, three scenarios such as the RADM2 chemical mechanism and MADE/SORGAM aerosol, the MOSAIC 8 section aerosol, and the GOCART dust erosion were simulated for calculating Asian dust emissions. As a result, the scenario of the RADM2 chemical mechanism & MADE/SORGAM aerosol depicted higher concentration than the others' in both Asian dusts and the background concentration of PMs. By comparing of the daily mean of PM10 measured at each air quality monitoring site in Seoul with the scenario results, the correlation coefficient was 0.67, and the root mean square error was $44{\mu}gm^{-3}$. In addition, the air temperature, the wind speed, the planetary boundary layer height, and the outgoing long-wave radiation were simulated under conditions of no chemical option with these three scenarios within the WRF or WRF-Chem model. Both the spatial distributions of the PBL height and the wind speed of u component among the meteorological factors were similar to those of the Asia dusts in range of 1,800-3,000 m and $2-16ms^{-1}$, respectively. And, it was shown that both scenarios of the RADM2 chemical mechanism and MADE/SORGAM aerosol and the GOCART dust erosion were interacted on-line between meteorological factors and Asian dusts or aerosols within the model because the outgoing long-wave radiation was changed to lower than the others.

A Comparison between Simulation Results of DSSAT CROPGRO-SOYBEAN at US Cornbelt using Different Gridded Weather Forecast Data (격자기상예보자료 종류에 따른 미국 콘벨트 지역 DSSAT CROPGRO-SOYBEAN 모형 구동 결과 비교)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Hur, Jina;Song, Chan-Yeong;Ahn, Joong-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.164-178
    • /
    • 2022
  • Uncertainties in weather forecasts would affect the reliability of yield prediction using crop models. The objective of this study was to compare uncertainty in crop yield prediction caused by the use of the weather forecast data. Daily weather data were produced at 10 km spatial resolution using W eather Research and Forecasting (W RF) model. The nearest neighbor method was used to downscale these data at the resolution of 5 km (W RF5K). Parameter-elevation Regressions on Independent Slopes Model (PRISM) was also applied to the WRF data to produce the weather data at the same resolution. W RF5K and PRISM data were used as inputs to the CROPGRO-SOYBEAN model to predict crop yield. The uncertainties of the gridded data were analyzed using cumulative growing degree days (CGDD) and cumulative solar radiation (CSRAD) during the soybean growing seasons for the crop of interest. The degree of agreement (DOA) statistics including structural similarity index were determined for the crop model outputs. Our results indicated that the DOA statistics for CGDD were correlated with that for the maturity dates predicted using WRF5K and PRISM data. Yield forecasts had small values of the DOA statistics when large spatial disagreement occured between maturity dates predicted using WRF5K and PRISM. These results suggest that the spatial uncertainties in temperature data would affect the reliability of the phenology and, as a result, yield predictions at a greater degree than those in solar radiation data. This merits further studies to assess the uncertainties of crop yield forecasts using a wide range of crop calendars.