DOI QR코드

DOI QR Code

A Comparison between Simulation Results of DSSAT CROPGRO-SOYBEAN at US Cornbelt using Different Gridded Weather Forecast Data

격자기상예보자료 종류에 따른 미국 콘벨트 지역 DSSAT CROPGRO-SOYBEAN 모형 구동 결과 비교

  • Yoo, Byoung Hyun (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Kim, Kwang Soo (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Hur, Jina (National institute of Agricultural sciences, RDA) ;
  • Song, Chan-Yeong (Division of Earth Environment, Pusan National University) ;
  • Ahn, Joong-Bae (Division of Earth Environment, Pusan National University)
  • 유병현 (서울대학교 농림생물자원학부) ;
  • 김광수 (서울대학교 농림생물자원학부) ;
  • 허지나 (국립농업과학원) ;
  • 송찬영 (부산대학교 지구환경시스템학부) ;
  • 안중배 (부산대학교 지구환경시스템학부)
  • Received : 2022.03.17
  • Accepted : 2022.09.27
  • Published : 2022.09.30

Abstract

Uncertainties in weather forecasts would affect the reliability of yield prediction using crop models. The objective of this study was to compare uncertainty in crop yield prediction caused by the use of the weather forecast data. Daily weather data were produced at 10 km spatial resolution using W eather Research and Forecasting (W RF) model. The nearest neighbor method was used to downscale these data at the resolution of 5 km (W RF5K). Parameter-elevation Regressions on Independent Slopes Model (PRISM) was also applied to the WRF data to produce the weather data at the same resolution. W RF5K and PRISM data were used as inputs to the CROPGRO-SOYBEAN model to predict crop yield. The uncertainties of the gridded data were analyzed using cumulative growing degree days (CGDD) and cumulative solar radiation (CSRAD) during the soybean growing seasons for the crop of interest. The degree of agreement (DOA) statistics including structural similarity index were determined for the crop model outputs. Our results indicated that the DOA statistics for CGDD were correlated with that for the maturity dates predicted using WRF5K and PRISM data. Yield forecasts had small values of the DOA statistics when large spatial disagreement occured between maturity dates predicted using WRF5K and PRISM. These results suggest that the spatial uncertainties in temperature data would affect the reliability of the phenology and, as a result, yield predictions at a greater degree than those in solar radiation data. This merits further studies to assess the uncertainties of crop yield forecasts using a wide range of crop calendars.

주요 곡물 생산 지역에 대한 작황 계절 예측을 위해 작물모형과 기상 예보자료들이 활용되고 있다. 이 때, 작물모형의 입력자료로 활용되는 기상자료의 불확실성이 작황 예측 결과에 영향을 줄 수 있다. 본 연구에서는 기상 예보자료에 따른 작물모형 결과에 미치는 영향을 알아보고자 하였다. 주요 곡물 생산 지역인 미국의 콘벨트 지역을 대상으로 중규모 수치예보 모형인 Weather Research and Forecasting (WRF)로 10km 해상도의 계절 예측 자료를 생산하였다. 보다 상세한 기상 예보자료 생산을 가정하기 위해 통계적 기법인 Parameter-elevation Regressions on Independent Slopes Model (PRISM) 기법을 활용하여 WRF 자료를 기반으로 5km 해상도로 예측 자료를 생산하였다. WRF와 PRISM 계절 예측 자료로 CROPGRO-SOYBEAN 모형을 구동하여 두 기상 예보자료에 따른 작물 생육 모의 결과를 얻었다. 2011~2018 기간에 대하여 4월 10일부터 8일 간격으로 11개의 파종일을 설정하였으며, 3개의 콩 성숙군에 대한 품종 모수가 사용되었다. 기상 자료의 불확실성을 파악하기 위해 작물 재배기간 동안의 누적 생육도일과 누적 일사량을 비교하였다. 예측된 수량 및 성숙일 등의 주요 변수들을 비교하였다. 두 기상 자료로부터 얻어진 변수들 사이의 일치도 통계량 계산을 위해 root mean square error (RMSE), normalized root mean square error (NRMSE) 및 structural similarity(SSIM) index가 사용되었다. WRF와 PRISM에서 계산된 누적 생육도일 사이의 일치도가 낮았던 연도에 콩 성숙일 모의 값에 대한 오차가 크게 나타났다. 콩 모의 수량 또한 성숙일 및 온도의 오차가 크게 나타났던 연도에 상대적으로 낮은 일치도를 가졌다. 또한 파종일이 수량 및 성숙일 예측의 일치도에 상당한 영향을 미치는 것으로 나타났다. 이러한 결과는 WRF와 PRISM 자료 사이에 온도 자료의 불확실성이 작황 예측의 불확실성에 영향을 주었으며, 재배 시기에 따라 그 불확도의 크기가 상이할 수 있음을 암시하였다. 따라서 신뢰도 높은 작황 예측 자료 생산을 위해 작물별 재배기간을 고려한 불확실성 평가 등의 추가적인 연구가 진행되어야 할 것으로 보인다.

Keywords

References

  1. Ahn, J.-B., J. Hur, and A.-Y. Lim, 2014: Estimation of fine-scale daily temperature with 30 m-resolution using PRISM. Atmosphere 24(1), 101-110. https://doi.org/10.14191/Atmos.2014.24.1.101 (in Korean with English abstract)
  2. Baigorria, G. A., J. W. Jones, and J. J. O'Brien, 2008: Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model. Agricultural and Forest Meteorology 148(8-9), 1353-1361. https://doi.org/10.1016/j.agrformet.2008.04.002
  3. Ban, H.-Y., J.-B. Ahn, and B.-W. Lee, 2019: Assimilating MODIS data-derived minimum input data set and water stress factors into CERES-Maize model improves regional corn yield predictions. Plos One 14(2), e0211874. https://doi.org/10.1371/journal.pone.0211874
  4. Battisti, R., P. C. Sentelhas, P. S. Parker, C. Nendel, G. M. D. S. Camara, J. R. B. Farias, and C. J. Basso, 2018: Assessment of crop-management strategies to improve soybean resilience to climate change in Southern Brazil. Crop and Pasture Science 69(2).
  5. Bohra, A., S. Basu, E. Rajagopal, G. Iyengar, M. D. Gupta, R. Ashrit, and B. Athiyaman, 2006: Heavy rainfall episode over Mumbai on 26 July 2005: Assessment of NWP guidance. Current Science, 1188-1194.
  6. Boote, K., J. Jones, W. Batchelor, E. Nafziger, and O. Myers, 2003: Genetic coefficients in the CROPGRO-Soybean model: Links to field performance and genomics. Agronomy Journal 95(1), 32-51.
  7. Brunet, D., E. R. Vrscay, and Z. Wang, 2011: On the mathematical properties of the structural similarity index. IEEE Transactions on Image Processing 21(4), 1488-1499. https://doi.org/10.1109/TIP.2011.2173206
  8. Cantelaube, P., and J.-M. Terres, 2005: Seasonal weather forecasts for crop yield modelling in Europe. Tellus A: Dynamic Meteorology and Oceanography 57(3), 476-487. https://doi.org/10.3402/tellusa.v57i3.14669
  9. Castro, J. C., F. G. Dohleman, C. J. Bernacchi, and S. P. Long, 2009: Elevated CO2 significantly delays reproductive development of soybean under Free-Air Concentration Enrichment (FACE). Journal of Experimental Botany 60(10), 2945-2951. https://doi.org/10.1093/jxb/erp170
  10. Chen, J., F. P. Brissette, and R. Leconte, 2011: Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology 401(3-4), 190-202. https://doi.org/10.1016/j.jhydrol.2011.02.020
  11. Chipanshi, A., Y. Zhang, L. Kouadio, N. Newlands, A. Davidson, H. Hill, R. Warren, B. Qian, B. Daneshfar, F. Bedard, and G. Reichert, 2015: Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agricultural and Forest Meteorology 206, 137-150. https://doi.org/10.1016/j.agrformet.2015.03.007
  12. Coucheney, E., H. Eckersten, H. Hoffmann, P.-E. Jansson, T. Gaiser, F. Ewert, and E. Lewan, 2018: Key functional soil types explain data aggregation effects on simulated yield, soil carbon, drainage and nitrogen leaching at a regional scale. Geoderma 318, 167-181. https://doi.org/10.1016/j.geoderma.2017.11.025
  13. Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. International Journal Climatology 26(6), 707-721. https://doi.org/10.1002/joc.1322
  14. Daly, C., R. P. Neilson, and D. L. Phillips, 1994: A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology and Climatology 33(2), 140-158. https://doi.org/10.1175/1520-0450(1994)033<0140:Astmfm>2.0.Co;2
  15. Daly, C., E. H. Helmer, and M. Quinones, 2003: Mapping the climate of Puerto Rico, Vieques and Culebra. International Journal Climatology 23(11), 1359-1381, https://doi.org/10.1002/joc.937
  16. Daly, C., W. P. Gibson, G. H. Taylor, G. H. Taylor, and P. Pasteris, 2002: A knowledge-based approach to the statistical mapping of climate. Climate Research 22(2), 99-113. https://doi.org/10.3354/cr022099
  17. Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal Climatology 28(15), 2031-2064. https://doi.org/10.1002/joc.1688
  18. De Wit, A. d., and C. Van Diepen, 2007: Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agricultural and Forest Meteorology 146(1-2), 38-56. https://doi.org/10.1016/j.agrformet.2007.05.004
  19. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences 46(20), 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:Nsocod>2.0.Co;2
  20. Folberth, C., R. Skalsky, E. Moltchanova, J. Balkovic, L. B. Azevedo, M. Obersteiner, and M. van der Velde, 2016: Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nature Communications 7(1).
  21. Fujimori, S., T. Iizumi, T. Hasegawa, J. y. Takakura, K. Takahashi, and Y. Hijioka, 2018: Macroeconomic impacts of climate change driven by changes in crop yields. Towards Sustainable Global Food Systems 332.
  22. Gardner, A., I. Maclean, K. Gaston, and L. Butikofer, 2021: Forecasting future crop suitability with microclimate data. Agricultural Systems 190, 103084. https://doi.org/10.1016/j.agsy.2021.103084
  23. Gijsman, A. J., P. K. Thornton, and G. Hoogenboom, 2007: Using the WISE database to parameterize soil inputs for crop simulation models. Computers and Electronics in Agriculture 56(2), 85-100. https://doi.org/10.1016/j.compag.2007.01.001
  24. Hong, K.-O., M.-S. Suh, D.-K. Rha, D.-H. Chang, C. Kim, and M.-K. Kim, 2007: Estimation of high resolution gridded temperature using GIS and PRISM. Atmosphere 17(3), 255-268. (in Korean with English abstract)
  25. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia Pacific Journal of Atmospheric Sciences 42(2), 129-151.
  26. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134(9), 2318-2341. https://doi.org/10.1175/mwr3199.1
  27. Hur, J., and J.-B. Ahn, 2015: Seasonal prediction of regional surface air temperature and first-flowering date over South Korea. International Journal of Climatology 35(15), 4791-4801. https://doi.org/10.1002/joc.4323
  28. Irmak, A., J. W. Jones, and S. S. Jagtap, 2005: EVALUATION OF THE CROPGRO-SOYBEAN MODEL FOR ASSESSING CLIMATE IMPACTS ON REGIONAL SOYBEAN YIELDS. Transactions of the ASAE 48(6), 2343-2353. https://doi.org/10.13031/2013.20073
  29. Jiang, Z., Z. Chen, J. Chen, J. Liu, J. Ren, Z. Li, L. Sun, and H. Li, 2014: Application of crop model data assimilation with a particle filter for estimating regional winter wheat yields. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7(11), 4422-4431. https://doi.org/10.1109/JSTARS.2014.2316012
  30. Kaeomuangmoon, T., A. Jintrawet, C. Chotamonsak, U. Singh, C. Buddhaboon, P. Naoujanon, S. Kongton, Y. Kono, and G. Hoogenboom, 2019: Estimating seasonal fragrant rice production in Thailand using a spatial crop modelling and weather forecasting approach. The Journal of Agricultural Science 157(7-8), 566-577. https://doi.org/10.1017/S0021859619000881
  31. Kain, J. S., 2004: The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology 43(1), 170-181. https://doi.org/10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2
  32. Kim, H.-J., and J.-B. Ahn, 2015: Improvement in prediction of the Arctic Oscillation with a realistic ocean initial condition in a CGCM. Journal of Climate 28(22), 8951-8967. https://doi.org/10.1175/jcli-d-14-00457.1
  33. KREI (Korea Rural Economic Institute), 2021: "농업전망 2021", 328pp.
  34. Lee, J., M.-N. Shin, B.-I. Ku, K.-B. Shim, and W.-T. Jeon, 2021: Current status and direction of weed management according to cropping systems. KOREAN JOUNAL OF CROP SCIENCE 66(4), 459-466.
  35. Lee, K.-D., C.-W. Park, S.-I. Na, M.-P. Jung, and J. Kim, 2017: Monitoring on crop condition using remote sensing and model. Korean Journal of Remote Sensing 33(5_2), 617-620. https://doi.org/10.7780/KJRS.2017.33.5.2.1
  36. Lee, S.-J., E. H. Berbery, and D. Alcaraz-Segura, 2013: Effect of implementing ecosystem functional type data in a mesoscale climate model. Advances in Atmospheric Sciences 30(5), 1373-1386. https://doi.org/10.1007/s00376-012-2143-3
  37. Liu, Y., K. S. Kim, R. M. Beresford, and D. H. Fleisher, 2020: A generic composite measure of similarity between geospatial variables. Ecological Informatics 60.
  38. Liu, Y., J. Kim, D. H. Fleisher, and K. S. Kim, 2021: Analogy-based crop yield forecasts based on temporal similarity of leaf area index. Remote Sensing 13(16), 3069. https://doi.org/10.3390/rs13163069
  39. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research Atmospheres 102(D14), 16663-16682. https://doi.org/10.1029/97JD00237
  40. Na, S., S. Hong, Y. Kim, and K. Lee, 2014: Estimation of corn and soybean yields based on MODIS data and CASA model in Iowa and Illinois, USA. Korean Journal of Soil Science and Fertilizer 47(2), 92-99. https://doi.org/10.7745/KJSSF.2014.47.2.092
  41. NASS (National Agricultural Statistics Service), 2021: Quick Stats, https://quickstats.nass.usda.gov/ (Accessed on 2022 March 21)
  42. Ovando, G., S. Sayago, and M. Bocco, 2018: Evaluating accuracy of DSSAT model for soybean yield estimation using satellite weather data. ISPRS Journal of Photogrammetry and Remote Sensing 138, 208-217. https://doi.org/10.1016/j.isprsjprs.2018.02.015
  43. Palmer, T. N., A. Alessandri, U. Andersen, P. Cantelaube, M. Davey, P. Delecluse, M. Deque, E. Diez, F. J. Doblas-Reyes, and H. Feddersen, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bulletin of the American Meteorological Society 85(6), 853-872. https://doi.org/10.1175/BAMS-85-6-853
  44. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology and Climatology 9(6), 857- 861. https://doi.org/10.1175/1520-0450(1970)009<0857:Tmrows>2.0.Co;2
  45. Rosenzweig, C., J. Elliott, D. Deryng, A. C. Ruane, C. Muller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, and N. Khabarov, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences 111(9), 3268-3273. https://doi.org/10.1073/pnas.1222463110
  46. Shin, D., G. Baigorria, Y. Lim, S. Cocke, T. LaRow, J. J. O'brien, and J. W. Jones, 2009: Assessing crop yield simulations with various seasonal climate data, Science and Technology Infusion Climate Bulletin. NOAA's National Weather Service. 7th NOAA Annual Climate Prediction Application Science Workshop, Norman, OK, 24-27.
  47. Shin, D., G. Baigorria, Y. Lim, S. Cocke, T. LaRow, J. J. O'Brien, and J. W. Jones, 2010: Assessing maize and peanut yield simulations with various seasonal climate data in the southeastern United States. Journal of Applied Meteorology and Climatology 49(4), 592-603. https://doi.org/10.1175/2009JAMC2293.1
  48. Shin, S., S.-J. Lee, I. Noh, S.-H. Kim, Y.-Y. So, S. Lee, B. H. Min, and K. R. Kim, 2020: Temperature and solar radiation prediction performance of high-resolution KMAPP model in agricultural areas: Clear sky case studies in Cheorwon and Jeonbuk Province. Korean Journal of Agricultural and Forest Meteorology 22(4), 312-326. https://doi.org/10.5532/KJAFM.2020.22.4.312
  49. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. Tech Rep. No. NCAR/TN-468+STR, National Center for Atmospheric Research, 88pp. [Available online at https://opensky.ucar.edu/islandora/object/technotes:500]
  50. Song, C.-Y., S.-H. Kim, and J.-B. Ahn, 2021: Improvement in seasonal prediction of precipitation and drought over the United States based on regional climate model using empirical quantile mapping. Atmosphere 31(5), 637-656. https://doi.org/10.14191/Atmos.2021.31.5.1 (in Korean with English abstract)
  51. Tachikawa, T., M. Hato, M. Kaku, and A. Iwasaki, 2011: Characteristics of ASTER GDEM version 2. International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, IEEE, 3657-3660. https://doi.org/10.1109/IGARSS.2011.6050017
  52. Togliatti, K., S. V. Archontoulis, R. Dietzel, L. Puntel, and A. VanLoocke, 2017: How does inclusion of weather forecasting impact in-season crop model predictions? Field Crops Research 214, 261-272. https://doi.org/10.1016/j.fcr.2017.09.008
  53. Wang, J., R. M. Fonseca, K. Rutledge, J. MartinTorres, and J. Yu, 2019: Weather simulation uncertainty estimation using Bayesian hierarchical models. Journal of Applied Meteorology and Climatology 58(3), 585-603. https://doi.org/10.1175/JAMC-D-18-0018.1
  54. Wang, Z., L. Lu, and A. C. Bovik, 2004: Video quality assessment based on structural distortion measurement. Signal Processing: Image Communication 19(2), 121-132. https://doi.org/10.1016/S0923-5965(03)00076-6
  55. Yoo, B. H., J. Kim, B.-W. Lee, G. Hoogenboom, and K. S. Kim, 2020: A surrogate weighted mean ensemble method to reduce the uncertainty at a regional scale for the calculation of potential evapotranspiration. Scientific Reports 10(1).
  56. Yoo, B. H., and K. S. Kim, 2017: Development of a gridded climate data tool for the COordinated Regional climate Downscaling EXperiment data. Computers and Electronics in Agriculture 133, 128-140. https://doi.org/10.1016/j.compag.2016.12.001
  57. Yoo, B. H., K. S. Kim, and H.-Y. Ban, 2018: Development of a gridded crop growth simulation system for the DSSAT model using script languages. Korean Journal of Agricultural and Forest Meteorology 20(3), 243-251. https://doi.org/10.5532/KJAFM.2018.20.3.243
  58. Zhao, G., S. Siebert, A. Enders, E. E. Rezaei, C. Yan, and F. Ewert, 2015: Demand for multi-scale weather data for regional crop modeling. Agricultural and Forest Meteorology 200, 156-171. https://doi.org/10.1016/j.agrformet.2014.09.026
  59. Zhou, W., K. Guan, B. Peng, Z. Wang, R. Fu, B. Li, E. A. Ainsworth, E. DeLucia, L. Zhao, and Z. Chen, 2021: A generic risk assessment framework to evaluate historical and future climate-induced risk for rainfed corn and soybean yield in the U.S. Midwest. Weather and Climate Extremes 33.