DOI QR코드

DOI QR Code

국가산림자원조사 자료를 활용한 소나무 연륜생장과 기후인자와의 관계분석

Analysing the Relationship Between Tree-Ring Growth of Pinus densiflora and Climatic Factors Based on National Forest Inventory Data

  • 임종환 (국립산림과학원 기후변화센터) ;
  • 박고은 (국립산림과학원 기후변화센터) ;
  • 문나현 (국민대학교 산림환경시스템학과) ;
  • 문가현 (국민대학교 산림환경시스템학과) ;
  • 신만용 (국민대학교 산림환경시스템학과)
  • Lim, Jong-Hwan (Center for Forest and Climate Change, National Institute of Forest Science) ;
  • Park, Go Eun (Center for Forest and Climate Change, National Institute of Forest Science) ;
  • Moon, Na Hyun (Department of Forest, Environment, and System, Kookmin University) ;
  • Moon, Ga Hyun (Department of Forest, Environment, and System, Kookmin University) ;
  • Shin, Man Yong (Department of Forest, Environment, and System, Kookmin University)
  • 투고 : 2017.03.14
  • 심사 : 2017.04.14
  • 발행 : 2017.06.30

초록

본 연구는 국가산림자원조사에 의해 수집한 소나무의 연륜생장 목편자료에 근거하여 연륜생장과 기후인자와의 관계를 구명하기 위해 수행되었다. 먼저 소나무의 연도별 생장패턴을 분석하기 위해 제5차 국가산림자원조사에서 수집된 1951년부터 2010년까지 60년 동안의 연륜생장 자료를 정리하였다. 또한 소나무가 분포하는 시군을 대상으로 일별 평균기온과 강수량의 기상정보에 근거하여 연도별 생장도일과 표준강수지수를 산출하였다. 이 정보를 이용하여 기후조건이 소나무의 연륜생장에 미치는 영향을 분석하기 위해 연도별 온도효과지수와 강수효과지수를 추정하였으며, 이들 변수를 독립변수로 하는 소나무의 연륜생장 추정식을 개발하였다. 마지막으로 이 추정식을 기후변화 시나리오 RCP 4.5와 RCP 8.5에 적용함으로써 기후변화가 소나무의 연륜생장에 미치는 영향을 예측하였다. 기후변화 시나리오를 적용하여 2011년부터 2100년까지 90년 동안의 연륜생장 변화를 예측한 결과 시간이 경과하면서 연륜생장이 감소하는 것으로 분석되었다. RCP 4.5 시나리오를 적용하면 상대적으로 생장감소가 적은 반면, RCP 8.5를 적용하면 2050년 이후에는 큰 폭으로 연륜생장이 감소하는 것으로 예측되었다. 본 연구에서 얻어진 결과는 소나무의 지역별 생장특성의 추정뿐만 아니라 기후변화에 따른 생장패턴의 변화 예측에 필요한 유용한 정보로 활용될 수 있을 것으로 기대된다.

This study was conducted to analyze the relationship between tree-ring growth of Pinus densiflora and climate factors based on national forest inventory(NFI) data. Annual tree-ring growth data of P. densiflora collected by the $5^{th}$ NFI were first organized to analyze yearly growth patterns of the species. Yearly growing degree days and standard precipitation index based on daily mean temperature and precipitation data from 1951 to 2010 were calculated. Using the information, yearly temperature effect index(TEI) and precipitation effect index(PEI) were estimated to analyze the effect of climate conditions on the tree-ring growth of the species. A tree-ring growth estimation equation appropriate for P. densiflora was then developed by using the TEI and PEI as independent variables. The tree-ring growth estimation equation was finally applied to the climate change scenarios of RCP 4.5 and RCP 8.5 for predicting the changes in tree-ring growth of P. densiflora from 2011 to 2100. The results indicate that tree-ring growth of P. densiflora is predicted to be decreased over time when the tree-ring growth estimation equation is applied to the climate change scenarios of RCP 4.5 and RCP 8.5. It is predicted that the decrease of tree-ring growth over time is relatively small when RCP 4.5 is applied. On the other hand, the steep decrease of tree-ring growth was found in the application of RCP 8.5, especially after the year of 2050. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of P. densiflora and for predicting changes in tree-ring growth patterns caused by climates change.

키워드

참고문헌

  1. Arbatzis, A.A. and Burkhart, H.E. 1992. An evaluation of sampling methods and model forms for estimating height-diameter relationships in loblolly pine plantation. Forest Science 38(1): 192-198.
  2. Blasing, T.J., Duvick, D.N., and Cook, E.R. 1983. Filtering the effects of competition from ring-width series. Tree-Ring Bulletin 43: 19-29.
  3. Botkin, D.B., Janak, J.F., and Wallis, J.R. 1972. Some consequence of a computer model of forest growth. Journal of Ecology 60: 849-873. https://doi.org/10.2307/2258570
  4. Box, G.E.P., Jenkins, G.M., and Reinsel, G.C. 1994. Time series analysis-forecasting and control. Prentice Hall, Englewood Cliffs. N.J. pp. 297.
  5. Briffa, K.R. and Jones, P.D. 1990. Basic chronology statistics and assessment. pp. 137-152.
  6. Choi, J.N., Yu, K.B., and Park, W.K. 1992. Paleoclimate reconstruction for Chungbu Mountainous Region using tree-ring chronology. The Korean Journal of Quaternary Research, 6(1): 21-32.
  7. Colorado Climate Center. 2004. Colorado Climate Center Web Page. http://ulysses.atomos.colostate.edu/standardizedprecipitation.php.
  8. Cook, E.R. and Peter, K. 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tee-Ring Bulletin 41: 45-53.
  9. Fritts, H.C. 1976. Tree Rings and Climate. Academic Press. New York (USA). pp. 567.
  10. Fritts, H.C. and Swetnam, T.W. 1989. Dendroecology:a tool for evaluating variations in past and present forest environments. In: M. Begon, A.H. Fitter, E.D. Ford, and A. Macfadyen, eds., Advances in Ecological Research, Vol. 19. Academic Press, London. pp. 111-188.
  11. Hassan, Q.K. and Bourque, C.P.A. 2009. Potential species distribution of Balsam Fir based on the integration of biophysical variables derived with remote sensing and process-based methods. Remote Sensing 1: 393-407. https://doi.org/10.3390/rs1030393
  12. Holmes, R.L. 1983. Computer-assisted quality control in treering dating and measurement. Tree-Ring Bulletin 43: 69-78.
  13. Kira, T. 1945. A new classification if climate in eastern Asia as the basis for agricultural geography. Horticultural Institute, Kyoto University, Kyoto. Japan. pp. 28.
  14. Kira, T. 1976. Terrestrial Ecosystem: A General Survey. Kyoritsu Publication. Tokyo, Japan. pp. 166.
  15. Korea Forest Service. 2005. A study on the reformation of national forest inventory system by the changes of domestic and international conditions(IV). pp. 290. (in Korean)
  16. Korea Forest Service. 2012. Tree-ring DB Construction. pp. 299. (in Korean).
  17. Lee, S.T., Park, M.S., Jun, H.Y., Park, J.Y. and Chou, H.S. 2008. The effects of climate factors on the tree ring growth of Pinus densiflora. Korean Journal of Agricultural and Forest Meteorology 10(4): 177-186. https://doi.org/10.5532/KJAFM.2008.10.4.177
  18. Lim, J.H. 1998. A forest dynamics model based on topographically-induced heterogeneity in solar radiation and soil moisture on the Kwanfneung experimental forest. Ph.D. Dissertation. Seoul National University. pp. 145.
  19. Lloyd-Hughes, B. and Saunders, M.A. 2002. A drought climatology for Europe. International Journal of Climatology 22: 1571-1592. https://doi.org/10.1002/joc.846
  20. Mckee T.B., Doesken, N.J., and Kleist, J. 1993. The relationship of drought frequency and duration to time scales. In Proceeding of the Ninth Conference on Applied Climatology. American Meteorological Society, 179-184.
  21. National Institute of Forest Science. 2015. Relationships between growth of main tree species and climatic factors based on tree-ring analysis. pp. 165. (in Korean)
  22. National Institute of Forest Science. 2016. Relationships between growth of main tree species and climatic factors based on tree-ring analysis(2). pp. 148. (in Korean)
  23. Rigling, A., Waldner, P.O., Forster, T., Braker, O.U., and Pouttu, A. 2001. Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Canadian Journal of Forest Research 31: 18-31. https://doi.org/10.1139/x00-126
  24. Sander D. H. 1971. Soil properties and siberian elm tree growth in Nebraska wind-break. Soil Science. 112(5): 357-363. https://doi.org/10.1097/00010694-197111000-00011
  25. Seo, J.W. and Park, W.K. 2002. Reconstruction of May precipitation (317 years: AD 1682-1998) using tree rings of Pinus densiflora S. et. Z. in western Sorak Mt. The Korean Journal of Quaternary Research, 16(1): 29-36. (in Korean with English abstract)
  26. Shin, M.Y. 1990. The use of ridge regression for yield prediction models with multicolinearity. J. of Korean Forest Society 79(3): 260-268.
  27. Snee, R.D. 1977. Validation of regression models: Methods and Examples. Technometrics 19: 415-428. https://doi.org/10.1080/00401706.1977.10489581
  28. Son, B.H., Kim, J.H., Nam, T.K., Lee, K.H. and Park, W.K. 2011. Species identification and tree-ring analysis of wood elements in Daesungjeon of Jipyeong Hyanggyo, Yangpyeong, Korea. Mokchae Konghak 39(3): 213-220. (in Korean with English abstract)
  29. Speer, J.H. 2010. Fundamentals of tree-ring research. University of Arizona Press. Arizona (USA). pp. 368.
  30. Thom, H.C.S. 1966. Same methods of climatological analyses. World Meteorological Organization, Geneva, pp. 53.
  31. Wigley, T.M.L., Briffa, K.R. and Jones, P.D. 1984. On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23(2): 201-213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2
  32. Woodward, F.I. and Rochefort, L. 1991. Sensitivity analysis of vegetation diversity to environmental change. Global Ecology and Biogeography Letters 1: 7-23.
  33. Wu, H., Hayes, M, Wilhite, D.A. and Svoboda, M.D. 2005. The effect of the length of record on the standardized precipitation index calculation. International Journal of Climatology 25: 505-520. https://doi.org/10.1002/joc.1142
  34. Yim, Y.J. 1977. Distribution of forest vegetation and climate in the Korean peninsula. III. Distribution of tree species along the thermal gradient. Japanese Journal of Ecology. 27: 177-189.
  35. Zobel, B.J. and Van Buijtenen, J.P. 1989. Wood variation: Its causes and control. Springer Verlag, Berlin. pp. 363.

피인용 문헌

  1. The Potential of Using Tree-Ring Chronology from the Southern Coast of Korea to Reconstruct the Climate of Subtropical Western North Pacific: A Pilot Study vol.11, pp.10, 2017, https://doi.org/10.3390/atmos11101082