• Title/Summary/Keyword: mean and variance

Search Result 2,021, Processing Time 0.037 seconds

A Sanov-Type Proof of the Joint Sufficiency of the Sample Mean and the Sample Variance

  • Kim, Chul-Eung;Park, Byoung-Seon
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.563-568
    • /
    • 1995
  • It is well-known that the sample mean and the sample variance are jointly sufficient under normality assumption. In this paper a proof of the joint sufficiency is given without using the factorization criterion. It is related to a finite Sanov-type conditional theorem, i.e., the conditional probability density of $Y_1$ given sample mean $\mu$ and sample variance $\sigma^2$, where $Y_1, Y_2, \cdots, Y_n$ are independently and identically distributed (i.i.d.) normal random variables with mean m and variance $\delta^2$, equals that of $Y_1$ given sample mean $\mu$ and sample variance $\sigma^2$, where $Y_1, Y_2, \cdots, Y_n$ are i.i.d. normal random variables with mean $\mu$ and variance $\sigma^2$.

  • PDF

OPTIMAL INVESTMENT FOR THE INSURER IN THE LEVY MARKET UNDER THE MEAN-VARIANCE CRITERION

  • Liu, Junfeng
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.863-875
    • /
    • 2010
  • In this paper we apply the martingale approach, which has been widely used in mathematical finance, to investigate the optimal investment problem for an insurer under the criterion of mean-variance. When the risk and security assets are described by the L$\acute{e}$vy processes, the closed form solutions to the maximization problem are obtained. The mean-variance efficient strategies and frontier are also given.

WEIGHTED POSSIBILISTIC VARIANCE AND MOMENTS OF FUZZY NUMBERS

  • Pasha, E.;Asady, B.;Saeidifar, A.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1169-1183
    • /
    • 2008
  • In this paper, a method to find the weighted possibilistic variance and moments about the mean value of fuzzy numbers via applying a difuzzification using minimizer of the weighted distance between two fuzzy numbers is introduced. In this way, we obtain the nearest weighted point with respect to a fuzzy number, this main result is a new and interesting alternative justification to define of weighted mean of a fuzzy number. Considering this point and the weighted distance quantity, we introduce the weighted possibilistic mean (WPM) value and the weighted possibilistic variance(WPV) of fuzzy numbers. This paper shows that WPM is the nearest weighted point to fuzzy number and the WPV of fuzzy number is preserved more properties of variance in probability theory so that it can simply introduce the possibilistic moments about the mean of fuzzy numbers without problem. The moments of fuzzy numbers play an important role to estimate of parameters, skewness, kurtosis in many of fuzzy times series models.

  • PDF

Exact Variance of Location Estimator in One-Way Random Effect Models with Two Distint Group Sizes

  • Lee, Young-Jo;Chung, Han-Yeong
    • Journal of the Korean Statistical Society
    • /
    • v.18 no.2
    • /
    • pp.118-124
    • /
    • 1989
  • In the one-way random effect model, we often estimate the variance components by the ANOVA method and then estimate the population mean. Whe there are only two distint group sizes, the conventional mean estimator is represented as a weighted average of two normal means with weights being the function of variance component estimators. In this paper, we will study a method which can compute the exact variance of the mean estimator when we set the negative variance component estimate to zero.

  • PDF

Design Optimization Based on Designer's Preferences for the Mean and Variance (평균과 분산에 관한 설계자 선호에 기초한 설계 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Kim, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • In Taguchi's quadratic expected loss function used as robustness metric of performance characteristics, the mean and variance contributions are confounded. The consolidation of the mean and variance in the expected loss function may not always be the ideal approach. This paper presents a procedure for multi-attributes design optimization, where the mean and variance of performance characteristics are considered as separate attributes having designer's relative preferences for them and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) is introduced to attain robust optimal design. The effectiveness of proposed approach is shown with an example of a weld line minimization problem in the injection molding process.

  • PDF

Estimation of the Mean and Variance for Normal Distributions whose Both Sides are Truncated

  • Hong, Chong-Sun;Choi, Yun-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.249-259
    • /
    • 2002
  • In order to estimate the mean and variance for a Normal distribution which is truncated at both right and left sides, maximum likelihood estimators based on the entire sample from the original distribution are compared with the sample mean and variance of the censored sample which is the data remaining after truncation using simulation. We found that, surprisingly, the mean squared error of the mean based on the censored data Is smaller than that of the full sample estimators.

Variance components estimation in the presence of drift

  • Kim, Jaehee;Ogden, Todd
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.1
    • /
    • pp.33-45
    • /
    • 2016
  • Variance components should be estimated based on mean change when the mean of the observations drift gradually over time. Consistent estimators for the variance components are studied for a particular modeling situation with some underlying functions or drift. We propose a new variance estimator with Fourier estimation of variations. The consistency of the proposed estimator is proved asymptotically. The proposed procedures are studied and compared empirically with the variance estimators removing trends. The result shows that our variance estimator has a smaller mean square error and depends on drift patterns. We estimate and apply the variance to Nile River flow data and resting state fMRI data.

THE MEAN VALUE AND VARIANCE OF ONE-SIDED FUZZY SETS

  • Park, Jin Won;Yun, Yong Sik;Kang, Kyoung Hun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.511-521
    • /
    • 2010
  • In this paper, we define the one-sided fuzzy set and we calculate the mean value and variance, defined by C. Carlsson and R. $Full{\acute{e}}r$, of this fuzzy set. And we obtain a result that, in some special case, the mean of the product of two fuzzy sets is the product of means of each fuzzy sets. This result can be considered as the similar result which is well-known in the independence of events in probability theory.

ONNEGATIVE MINIMUM BIASED ESTIMATION IN VARIANCE COMPONENT MODELS

  • Lee, Jong-Hoo
    • East Asian mathematical journal
    • /
    • v.5 no.1
    • /
    • pp.95-110
    • /
    • 1989
  • In a general variance component model, nonnegative quadratic estimators of the components of variance are considered which are invariant with respect to mean value translaion and have minimum bias (analogously to estimation theory of mean value parameters). Here the minimum is taken over an appropriate cone of positive semidefinite matrices, after having made a reduction by invariance. Among these estimators, which always exist the one of minimum norm is characterized. This characterization is achieved by systems of necessary and sufficient condition, and by a cone restricted pseudoinverse. In models where the decomposing covariance matrices span a commutative quadratic subspace, a representation of the considered estimator is derived that requires merely to solve an ordinary convex quadratic optimization problem. As an example, we present the two way nested classification random model. An unbiased estimator is derived for the mean squared error of any unbiased or biased estimator that is expressible as a linear combination of independent sums of squares. Further, it is shown that, for the classical balanced variance component models, this estimator is the best invariant unbiased estimator, for the variance of the ANOVA estimator and for the mean squared error of the nonnegative minimum biased estimator. As an example, the balanced two way nested classification model with ramdom effects if considered.

  • PDF

Development of a Multiple Response Surface Method Considering Bias and Variance of Desirability Functions (만족도 함수의 편향과 산포를 고려한 다중반응표면최적화 기법 개발)

  • Jung, Ki-Hyo;Lee, Sang-Ki
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 2012
  • Desirability approaches have been proposed to find an optimum of multiple response problem. The existing desirability approaches use either of mean or min of individual desirability in aggregation of multiple responses. However, in order to find an optimum having high mean and low dispersion among individual desirability, the dispersion needs to be simultaneously considered with its mean. This study proposes bias and variance (BV) method which aggregates bias (ideal target-mean) and variance of individual desirability in multiple response optimization. The proposed BV method was applied to an example to evaluate its usefulness by comparing with existing methods. Evaluation results showed that the solution of BV method was a fairly good compared with DS (Derringer and Suich, 1980) and KL (Kim and Lin, 2000) methods. The BV method can be utilized to multiple response surface problems when decision makers want to find an optimum having high mean and low variance among responses.